JSC-25012

Volume Il
Advanced Programming Guide

CLIPS Version 6.03

June 15th 1995

Software Technology Branch

Lyndon B. Johnson Space Center

JSC-25012

CLIPS Advanced Programming Guide
Version 6.03 June 15th 1995

CONTENTS
[(= = o PP PP PP PP Xi
ACKNOWIBAGEIMENTS. ...t e e e e e e e e e et e et ettt a e e e e e e e e eeeeaeeeeeeennnees XV........
SECHON 1 - INITOAUCTIONeviiiiiiiiiee ettt e e e e e e e e e e e e eeeaeaeeeeas 1........
1.1 Warning About Interfacing With CLIPS............uiiiiii e 1.
1.2 Compatibility With CLIPS Version 5.1........ccoooiiiiiiiiiiiees e 1.
1.3 USING ANSI PrOtOtYPES. . .uuiiiie i e e e e ettt e e e e e e e a e e e e e e aeaaeas 2.
Section 2 - Installing and Tailoring CLIPS ... 3.
2.1 INStalliNg CLIPS ... e e e e e e e e e e e 3
2.1.1 Additional ConSIderationS............ooviiiiiiiiiiiiiiiiiiii it neeeeeee) 6.......
2.2 TAIlONNG CLIPS. ... e e e e e e e e e e e e e e 8.
Section 3 - Integrating CLIPS with External FUNCHIONS..............ciiiiiiiiiiiieeeeeeeeeeee, 15.
3.1 Declaring User-Defined External FUNCHIQNS.............coooiiiiiiiiiiiiiiiieeieeeeeeeee e 15..
3.2 Passing Arguments from CLIPS to External Functians.............ccoeevvvviviiiiiieneennn. 19.
3.2.1 Determining the Number of Passed Arguments..........ccccooeveiiiiiiiiiiininnnne. 19.
3.2.2 Passing Symbols, Strings, Instance Names, Floats, and Integers............... 19
3.2.3 Passing Unknown Data TYPES........oooi ittt 21...
3.2.4 Passing Multifield ValUES.............uviuieiiiiiii e 24....
3.3 Returning Values To CLIPS From External FUNCHONS............cccvvviiiiiiiiiiiiiineeeenn. 21.
3.3.1 Returning Symbols, Strings, and Instance Names.............ccccceeeeieiiieeeeeeenn, 21.
3.3.2 Returning Boolean ValUes...........cccciuiiiiiiiiiieieieeee e 28....
3.3.3 Returning External Addresses and Instance Addresses...........ccccevvvvvvvvnnns 30
3.3.4 Returning Unknown Data TYPES.....cooiiiiiiiiiiiiiiii ittt 31...
3.3.5 Returning Multifield ValUEes.............ooouvriiiiiiiiiie e 33....
3.4 User-Defined FUNCHION EXAMQALE.........uuuiiiiiiiiiiiiiicie e 37....
Section 4 - Embedding CLIPS ... e e e e e e e e e e e aaaana 41.....
4.1 ENVIrONMENT FUNCHIONS......oiiiiiiiiiiiiiiiie ettt e s e e e e e e e e e e e e eeeeeennennnns 41.....
4.1.1 ADdCIEAIrFUNCHION.......ciiiiiieee et eeed 41.....
v 00 242X (o | =T oo [[od ol U o Tod 1 o o R PURRRRRR 42.....
4.1.3 ADDRESEIFUNCHON.ciiiiiieee ettt e e eeeed 42.....
g O =] o = o SRR 43.......
A.1.5 BSAVE.....cetiiieeieeete et e et e e e e e e e e e rn el 43.......
g O R O 1 T USSR 43.......
4.1.7 CLIPSFUNCHONCAIL......uutiiiiiiiiiiiiiiiiee e 44.....
4.1.8 GetAUutOFIoatDIVIAENd.......ccooeei e A

CLIPS Advanced Programming Guide i

CLIPS Reference Manual

4.1.9 GetDynamicConstraintChecking..........ccccoeiiiii i 45...
4.1.10 GetSequenceOperatorRECOGNIEIONuuuuriiei e eeeee et 45...
4.1.11 GetStaticConstraintChecking.........cccovveiiiieeeeiiiiiieieeiciesneee e e eeeeenenn A0
4.1.12 INItIAIZECLIPScoeeeeeeeeee e eees 45......
g It 0 - T H TP PR PTRPPPPPY 46.......
4.1.14 RemoVveClearFUNCHON...........uuueiiiaeieee e eeeeeeeeeeen DB
4.1.15 RemoVvePeriodiCFUNCHON. ...t 47....
4.1.16 RemoVeReSEtFUNCHION..........cuuuiiiiiiiee e A
A.1.07 RESEL...eeeeiei et ari.......
A.1.18 SAVE... e e et e e e e e e e b e e e e era e aa el 48.......
4.1.19 SetAutoFloatDIVIAENT..........cccvviiiiiiiieiiiiiiieeeeeee e A8
4.1.20 SetDynamicConstraintChecking..............uueeiiiiiiiiiiiieeiieeceeeie e 48...
4.1.21 SetSequenceOperator ReCOgnition.............cevvvvvviiiiiieiieeeeeeeeseeeeeeennnnnnnnnn 490
4.1.22 SetStaticConstraiNtCNECKING.ccooiiiiiiii e 49....
V2 1= o 18 o To T o T U 1 od 1 o] o PSS 49......
4.2.0 DIIDDIEACTIVE. ...ttt e e e e e e 50......
4.2.2 DIIDDIEOT 50.......
v e B D 1 1 0] o] 1= a PP 50.......
4.2.4 GetWALCHITEM....coi i 50......
A.2.5 UNWALCH. ... e e e e 51.......
B.2.6 WALCK ...ttt a e e e 51.......
4.3 Deftemplate FUNCHONS. 51.....
4.3.1 DeftemplateMOdUIE...........ccooiiiiieeeec e 52.....
4.3.2 FINADEREMPIALEcoi i 52......
4.3.3 GetDeftemMpPlateLiSt..........ovvveiieiiceie e 52.....
4.3.4 GetDeftemplateNaMIE.uuiiiiiiiiiii e 53.....
4.3.5 GetDeftemplatePPFOLM.........ooovviiiiieee e e e 53....
4.3.6 GetDeftemplateWatChL...........oooiiiiiiiiii e 53.....
4.3.7 GetNextDeftemPlate.........cccooviiiiiii e 53.....
4.3.8 IsDeftemplateDeletable..............ooo 54.....
4.3.9 LiStDeftemPpPlates...........oooveiiiiiiiiiii e 54......
4.3.10 SetDeftemplateWatCh............uuuiiiiiiiiiee e 54.....
4.3.11 UndeftempPlate........ccoooeieiiiiiieecr e 55......
- ox o B] o 1] L PSR 55.......
B4 L ASSEIT. ..ttt e e e e e e e e e e errna s a5.......
B4, 2 ASSEITSTING. ..eeeeeeeeieeieee ettt et e e e e e e e e e e e e e e e e 56.......
4.4.3 AssignFactSIotDefaullS...........uuuiiiiiiie e 51....
A 4.4 CrEatEFACL...... oot eaaaan 51.......
4.4.5 DecrementFaCtCOUNL...........i it e e e eneaans 59.....
G = o [T [G 60.......
QA7 FACES. ...ttt ettt e e e e e e ennn e e e eennnn e eeeeensd 60........
4.4.8 GetFaCtDUPICALION. ...ttt a e aqQ.....
4.4.9 GetFactLIiStChanged............oooiiviiiiiccce e 6l.....

ii Table of Contents

JSC-25012

4.4.10 GetFaCtP P ON o it e 6l.....
e I R =Y 1 = 11 £ o | 62......
4.4.12 GEtNEXIFACT. .. .cu i e e 62......
4.4.13 INCrementFaCtCOUNL........couiiiii e e e ea e 63.....
O o Y= Lo = o TR 63......
g R U | £ = (1 £ () A 64......
Nt N o L= = Vot PR 64.......
A.A.17 SAVEFACTS.. ..ot an] 65.......
4.4.18 SetFacCtDUPIICALION.........ccooiiieeieeeee e e e 65.....
4.4.19 SetFacCtLIStCNANGEA.cuueiiiiii e aeeeaeaes 65.....
4.5 DEffaCtS FUNCLONS......cccviiiiite et e st e e s et e e e e e e eaaaas G6......
T A 1Y 1 7= T3 £ 1Y, (o 1o U] = T 66......
A T [0 | B LY 1 7= 1] £ 66......
T A C 1= { B L= j = (o1 £ I Y SR 66......
4.5.4 GetDeffaCtSNAME. ... oo e e eaad 67......
4.5.5 GetDeffaCtSPPOM. ... 67.....
R N S 1= N) B L= j = Tox 61......
4.5.7 IsDeffactSDeletable........ oo as8.....
S T 1S 1 B I= = Tox TR 68......
L TS I gL (=1 1 7= 1] £ 68.......
4.6 DEfTUIE FUNCHIONS.......uuiiiii et e e e e et e e s et e s saaeeeraaaeeeesd 69......
4.6.1 DefruleHasBreakpOint............oooiiiiiiiiiiiiiiiie e 69.....
A B L=y U] (=11 [Yo 1] = 69......
4.6.3 FINADEITUIC.cceneie e e e e aaasd 69.......
N R A 1= | B L=y 1 U] L= I 70......
4.6.5 GetDeffuIENAME........coveiiiee e en e L O
N S 1= 1 B L=y 1 U1 1] d = o 5 o 70.....
4.6.7 GetDefruleWatChACHVALIONS........ccuvviiviiieeiieeeeeeeee e eneeen e L
4.6.8 GetDefruleWatChFiNNgGS.......ccooiiiieeeeee e 71....
4.6.9 GetINCremMENTAIRESEL........e i e eaas 71.....
4.6.10 GetNeXtDETUIE. ... e L
4.6.11 ISDEfruleDeletablen...........couuniiieiiee e 72.....
R I 1Y (D 1Y UL 72......
T G 1Y, = 1 (o] 1= 12.......
R I = L= (== 73.......
4.6.15 REMOVEBIEAK......coeeiiii e e e e 13......
R R NSRS T= 1 =T (=T TR 4 T
4.6.17 SetDefruleWatChACHVALIONS.........iiieeieeeee e e 74....
4.6.18 SetDefruleWatChFirNgS... ... oo 74....
4.6.19 SetINCreMENTAIRESEL........u i e e e e e e 74.....
4.6.20 SNOWBIEAKS.iiiiiiiiiiti ettt e e e et e et e e ea e e e eaaaeees 74......
T R O L o (=Y U = 75.......
o 1= g T = T T 1[0 75......

CLIPS Advanced Programming Guide iii

CLIPS Reference Manual

4.7.1 ADDRUNFUNCHION. ..ottt 75......
o o 1= o o - USSR 76.......
4.7.3 ClearFOCUSSTIACK...........ccceeiiiiiiiiiiciiiiiieeeeeeeeeee e sisseeseeseeee
A. 7.4 Delet@ACHVALION......ceeieiieiiieiee ettt e e e e e e e e e e e e e e e eeen e e nns 11......
R S T oo L PP 1.......
A4.7.6 GEtACHVAIONNEAIME. .. .cii it e e e e e e e eeeeas 77.....
4.7.7 GEtACHVAtIONPPFOIMN......ciiiiiiiiiiiee et 18.....
4.7.8 GetACtivatioNSaliENCe.........cooo e B
4.7.9 GetAgendaChanged..........ccooiiiiiiiiiiiicee e 78.....
A.7.10 GEIFOCUS. iiiiiiiie ettt e ettt e e e e eets e e e eenn e e e s eennnnn e eeeesnnnnn el Derinnn
4.7.11 GetFOCUSSIACK.cciiieiiiiiii e dd Do
A4.7.12 GEtNEXIACHVALION.....ccii i it e e e e e e e e 79.....
4.7.13 GetSalieNnCeEValuatiQn..........ccouiiiiiiiiiii e 80.....
A.7.14 GOISITAEOYcceiiiieeeieeitttiee e e ettt e e e e e e e e e e e e e rn b 80......
4.7.15 LISTFOCUSSTACK........cciiiieiiiiiiiee ettt 80......
4.7.26 POPFOCUSoiiiiiiiiiiieee ettt e e e e e e e e e e e e eeennnneees 80.......
4.7.17 RefreSNAQENTAL........uueiiei it 81......
4.7.18 REMOVERUNFUNCHON. ..ottt 8l....
4.7.19 REOIAEIAGENUA.ceeeeeeeeiieecee ettt e e e e e e e e e e e e aeeeeeenanree 81.....
O N L o T PPPRSSUPPRURRR B82.......
4.7.21 SEtACHVAtIONSAlIENCE.uuiiiiiiiiiiiiiiiiii e 82....
4.7.22 SetAgendaChanged..... ..o 82.....
4.7.23 SetSalieNCEEVAIUALION...........uuiiiiiiiiiiiiiiee e 83....
A.7.24 SEUSITALEOY.....ceeieiiiieieeeieiit et e e e e e e ettt e e e e e e e e e e e e eeennnnnnrnraaaa 83......
4.8 Defglobal FUNCHONS. e e e e e e e eees 84......
4.8.1 DefglobalMOdUIE...........uuieeeeeeee e B84.....
4.8.2 FINADEFGIODAL ..o 84......
4.8.3 GetDefgloDalList.... ... 84......
4.8.4 GetDefglobalNamME...........oooviiiie e 85.....
4.8.5 GetDefglobalPP RO 85.....
4.8.6 GetDefglobalValUe.............ouviiiiiiiiieii e 8s.....
4.8.7 GetDefglobalValUBFOrm..........oooiiiiiii e 86.....
4.8.8 GetDefglobalWatCh.............ooooiimieccce e 86.....
4.8.9 GetGlobalsSChangea...........eiiiiiiiiiie e 86.....
4.8.10 GetNextDefglobal..............ouviiiiiiii e 87.....
4.8.11 GetReSetGIODaAIS.ooeeeeeeee e 81.....
4.8.12 IsDefglobalDeletable...............ooori e 81.....
4.8.13 LiStDEFGIODAISuueiiiiiiieieeiiiei e 88......
4.8.14 SetDefglobalValue.............oooriiiiiiicei e 88.....
4.8.15 SetDefglobalWatCh............oooiiii 88.....
4.8.16 SetGlobalsSChanged..........ccooo oo 89.....
4.8.17 SetReSEetGIODALS.........ooveeeeeeieee e 89.....
4.8.18 ShowDefglobals..........cooviiiiiiiccce e 389.....

iv Table of Contents

JSC-25012

4.8.19 UNAefgIoDal.........ccoeoeeeeeeee e aa......
4.9 DeffuNCION FUNCHONS ... coui et e e s e e e e e e s e eeaas 90......
4.9.1 DeffuNCHONMOUAUIB........e e e aQ.....
4.9.2 FINADEIUNCHION......uuiie e e e e eaaas 90......
4.9.3 GetDEffUNCHONLISL.uuniiiii e e e e e e e aaaaes al.....
4.9.4 GetDeffUNCHONNAME. e e e e ees 9l.....
4.9.5 GetDeffuNCLONPPFOIMIL... ... 91....
4.9.6 GetDeffUNCHONWALCK........cov e 92.....
4.9.7 GEtNEXIDEUNCHION.......cuui i e e e eens 92.....
4.9.8 IsDeffunctionDeletable............oiviiiiii 92....
4.9.9 LiStDEffUNCHIONS. .. .ciiiii e e e e e e e eaa e ees 93......
4.9.10 SetDeffunClONWALCKH.uiiee e 93.....
/e g I I 1 [0 1= 3 10 [o £ o] 93......
4.10 DefgeneriC FUNCHIONS.ooo it 94......
4.10.1 DefgeneriCMOAUIE.cooiiiiieeeee e 9.....
4.10.2 FINADETGENEIICcciiiiiiieeeee ettt 94......
4.10.3 GetDefgeNEIICLISL.......ceviieieiieiiie st e e e e e e e e e e e e e e e e e 9.....
4.10.4 GetDefgeneriCNAMIE.uuiiiiiiiiiii e 95.....
4.10.5 GetDefgeneriCPPFOLM...........uuiiiiei e s e e e e e e e e e e eeeaeanees 95.....
4.10.6 GetDefgeneriCWALCKL.couiiiieiiii e 95.....
4.10.7 GEtNeXIDEIGENEIIC......uuuuiiii e 96.....
4.10.8 IsDefgenericDeletable. ... 96.....
4.10.9 LiStDEIGENEIICS......ceeeeeeeeeitiee sttt e e e e e e e e e e e e e e eeaeeaaanee 96......
4.10.10 SetDefgeneriCWALCKL............uuuiiiiiiiiiiiiieee e 9r....
g 0 0 5 L U g o 1= {0 =T =T ¢ o P 97......
4.11 Defmethod FUNCHIONS.t e e e e e e e e eaas 97.....
4.11.1 GetDefmethodDeSCHPLON.iiiiie e e e e e e e e e e eeeaaannens 97....
4.11.2 GetDefMEtNOALISE. ... e e e e e e as8.....
4.11.3 GetDefMethOAPPFOIM.........i e 98....
4.11.4 GetDefmethodWatCh.........con i 99.....
4.11.5 GetMethOORESIICONS.ccvuiiiiie e e e 99....
4.11.6 GetNextDefMetNQd..........ooovniii e e Q9.....
4.11.7 IsDefmethodDeletable.........cooooueiiieii e 100..
4.11.8 LiStDEfMEINOAS... ...t e e e s 100...
4.11.9 SetDefMmethOdWaAtChL............iiiii e 101...
I O O L 1 T = 1 = [Yo 101....
4,12 DEfClass FUNCLOMNS.coiiiiiiiie e e e e et e s e e e eaaaes 101....
4.12.1 BrOWSECIASSES.uniietiieieiit ettt e e e e et e e e et e et eeea e e eaearaeaes 101...
O A O F= 1Y Y 0] 1 = T 1 102...
4.12.3 ClIaSSREACLIVER...... oot e et e e 102...
O A O F= T3] [0 £ 102....
4.12.5 ClaSSSUDCIASSESceeiiiii et e e e e e e 103...
4.12.6 ClaSSSUPEICIASSES.uvvuuiuiiiiiiee e e e eeeee ettt s e e e e e e e e e e e e e e eea e 103...

CLIPS Advanced Programming Guide Y

CLIPS Reference Manual

vi

4.12.7 DEfCIaSSIMOUUIR.couiiiiiei e r e e ees 104...
4.12.8 DESCIIDECIASS.ccvniii it e e e e e e e 104....
o e I T T | B L= {1 = Y 104....
4.12.10 GetDEfCIASSLIST... ...t e 105...
4.12.11 GetDefClasSNaAME........ooiieieiee e 105...
4.12.12 GetDefClasSPPFOIM. ... oot 105...
4.12.13 GetDefclassWatChINStANCES..........uiiiiii e 106.
4.12.14 GetDefclassSWatChSIQtS........coovuiiiiiiiee e 106..
4.12.15 GetNEeXIDEICIASS.u i 106...
4.12.16 IsDefclassDeletable. ... 107...
4.12.07 LiStDEICIASSES ... ciivi e 107....
4.12.18 SetDefclassSWatChINSIANCES.......c.cuiiieiiiiiee e 107.
4.12.19 SetDefClasSWaLCNSIOLS.uuiiiiiieceie e 107..
4.12.20 SIOtAHOWEAVAIUES........ceeieiiiiee e e eeas 108
4.12.21 SIOtCardiNality.......ccceiieiieeeeeieee e e e e e 108
4.12.22 SIOIDITECIACCESSP....ei et e s 1009...
O B I (0] | (1= £ 109....
O Y (o] = (oL] (T 109....
4.12.25 SIOtINIEADIER.ee e 110....
4.12.26 SIOtPUDBICP.ot 110....
I A (o] (= o T 11Q....
4.12.28 SIOISOUICES.....cevniiieieieeeee e et e e et e e e e e e eeaas 111....
A TS (o]l I8/ o1 111...
4.12.30 SIOtWIIADIEP... ... e e e e 111...
e 3 T | o T F= 1T 112....
4.12.32 SUPETCIASSP......ccoiiiiiiee e 112....
e G 3 T U1 T L= o F= F TN 112....
4. 13 INStANCE FUNCHONSuiiiie it e e e e e e e e e e e e eaaes 113....
4.13.1 BinaryLoadINStanCES.........ccooiiiiieiiiiccie e 113..
4.13.2 BiNarySaVEINSTANCES.ccviiiiiieeeieiee et e e e e e e e e 113..
4.13.3 CreateRaAWINSIANGCE........ocviiiiiiieie e e e e e 113...
4.13.4 DecrementIiNStanCECOUDLoivniiiiieee e e e 114..
4.13.5 DeleteINSIANCE.uu it e e 114....
R B ST B (=T (=] [114....
4.13.7 DIFECIPULSIOL.ueiiiii e e e e e e e aaaas 115....
4.13.8 FINAINSIANCE. ... et e e et e e e e e e e e e aeas 115....
4.13.9 GetINStANCECIASS.cieviiieete e e e e 116...
4.13.10 GetINSIANCENGAIMIE. ... e e e e e e 116...
4.13.11 GetlNStaNCEP P FOLMttt e s 116...
4.13.12 GetInstanCcesChanged..........oooviiiiiiiiiiii e 117..
4.13.13 GEINEXIINSIANCE.ottt eaes 117...
4.13.14 GetNextINStanCeINCIASS 118..
4.13.15 InCrementiNStanNCECOUNLccuiiiiiii e 118..

Table of Contents

JSC-25012

g I T N T 1 011 7= 1 Lo = PP 120....
G I A I T Yo | [1) = 1 (o =, 120....
4.13.18 MaAKEINSIANCE.....ccvuiiiiie ettt e e e e st eerab e e e eaaaans 120....
4.13.19 RESIOIEINSIANCES .. .cuiiiiii it e e e e e eanes 121...
4.13.20 SAVEINSIANCES. . ..u ittt e e e et et a e aa e 121...
A.13.21 SENM..coniieii e 122.....
4.13.22 SetIinstancesChanged..............cciiiiiiiiie i e e e e 122..
4.13.23 UNMaAKEINSIANCE......uiiiiiii et e e e e ra e eaaees 123...
4.13.24 ValidINStANCEAUUIESS.cvvniiiie et e e 123
4.14 Defmessage-handler FUNCHQANS........ccooviiiiiiiiieiieeceeiise e 123
4.14.1 FindDefmessageHaNIE!.............ciiiiiiii e 123
4.14.2 GetDefmessageHandIerLiSt.........ooouuuiiiiiiiiiiiie e 124,
4.14.3 GetDefmessageHandlerName..............uuuiiiiiiiiiieee e 124
4.14.4 GetDefmessageHandlerPPFOIM.............uuvviiiiiiiieeieeeeeeeeceeeeee 125
4.14.5 GetDefmessageHaNdlerTYPE.uuiiiiei e e e e e eeaaaeens 125
4.14.6 GetDefmessageHandlerWatChl.............oovvvviiiiiiiiii e 125.
4.14.7 GetNextDefmessageHaNdIer.............ccoooiiiiiiiiiccce e 126..
4.14.8 IsDefmessageHandlerDeletable...............ccccoiie 126.
4.14.9 ListDefmessageHandIers...............uuuiiiiiiiiiii e 126..
4.14.10 PreVIEWSENA......ceeiiii ettt e et e e e e s e e aaaas 121....
4.14.11 SetDefmessageHandlerWatCh..............cccoooiiiiiiiieiccce e, 127.
4.14.12 UndefmessageHandler....... ..o 127..
4,15 DefinStanCes FUNCLONScciiui it e e e e e e e e e e eeaas 128...
4.15.1 DefinStanCeSMOUUIE..........civeiiiei e 128...
4.15.2 FINADEIINSIANCES.......iiiviieieeie ettt e e e e e 128...
4.15.3 GetDefINSIANCESLISL.....ciiviiee i e e aaaas 129...
4.15.4 GetDefiNnStanNCESNAIMIE.........c.cvviiiiii e e eeaaas 129..
4.15.5 GetDefiINStanCeSPPFOMML........civiiieeee e 129..
4.15.6 GetNeXtDEfINSIANCES.coovviiieie e 130...
4.15.7 IsDefinstancesDeletalle.... ... 130..
4.15.8 LIStDEIINSIANCES. ... ciciie ettt e e e e eea 130...
4.15.9 UNAETIINSTANCES.cieiiiiieeieeee e e e e et e e e e e e eaeaeaaeees 131...
4.16 DefMOodUle FUNCHIONS.cviiiiiiie e e e e e e e e eeans 131...
4.16.1 FINADEIMOUUIE........ i e e e e 131...
4.16.2 GetCUIrENIMOAULE.........eu i e 131...
4.16.3 GetDefMOAUIELISE......cuuiieeiei e e e e e e 132...
4.16.4 GetDefMOAUIENAME. oo e 132..
4.16.5 GetDefMOAUIEPPFOLM........oiiiieeeeeee e 132..
4.16.6 GetNeXtDEfMOAULE........... i 132...
4.16.7 LiStDEIMOUUIES........ ittt e e e e e e e 133...
4.16.8 SEtCUIMTENIMOAUIE.ou i e 133...
4.17 Embedded Application EXampPleSs.......cccccuuiiiiiiiiiiieieice e 133.
4.17.1 User-Defined FUNCHONS..........uuiiiiiiiiie ettt e ae e eaaans 133..

CLIPS Advanced Programming Guide vii

CLIPS Reference Manual

4.17.2 Manipulating Objects and Calling CLIPS Functians............cccoeevvvvvvvvnnnns 136
Section 5 - Creating a CLIPS RUN-tIM& Program............couuuuuiiiiiiiiiinneeeeeeeeeeeeeeeeeeeeinnnns 139
5.1 Compiling the CONSIIUCESuvuiiiiiiiie e e e e e e e e e e e e e eeeeaaenes 139...
5.1.1 Additional CoNSIAEratiONS.........ccuuuuuruuiiiiaaee e ettt e e e 142..
5.1.2 Porting Compiled CONSIIUCLS.........cccoiiiiiiieeeeiicee e 143..
Section 6 - Combining CLIPS with Languages Other Than C..............oeeeeiiiiiiiiiiiiinnnes 145
CI I [a0 To (U Tod 1] o PP PPPPPPRPPPPPR 145.....
6.2 Ada and FORTRAN Interface Package Function. List.............ccccceeiiiiiinenenennnnnen. 145
6.3 Embedded CLIPS - Using an External Main Program...............cccoevvvvvivvvinnnnnnnnn. 146
6.4 Asserting Facts iNt0 CLIPS..........ou e 141...
6.5 Calling a Subroutine from CLIPS..........oooii i 148..
6.6 Passing Arguments from CLIPS to an External FUNCUON.............oooeeeiiiiiiiiennnnnns 149
IS 1 0o @] 01 V7=T][] o 152....
6.8 ComPIlNG AN LINKING ...ttt 152...
6.8.1 VMS AdA VEISION....cciiiiiiieiii ittt e e e 152...
6.8.2 VMS FORTRAN VEISION.....ciiiiiiiiiiiitiiiiiiaee ettt e e e e e e 153..
6.8.3 CLIPS LiDIary.....ccoooiiiiiiiiiii et a e 154....
6.9 Building an Interface Package............coooiiiiiiiiiiiiiiee e 154..
Section 7 - 1/O ROULEN SYSTEML.......cccviiiiiiiiiiiiee e e e e e e e e e e e e e e e e e eeeeeaeannaes 155...
4% R 1 {0 o (3 Tox 1 o o 1 155.....
2 Mo To | (o= LN NN = T = PP 155.....
7.3 ROULBIS. ..ttt e e ettt e e e e e ettt e e e e e e et e e e e e e eaaaa e eas 157......
A o 10 1 (=T g e 0] 11 =PRI 158....
7.5 INternal 1/O FUNCHONS.uuuiiiiieee et e e e e e e e eae 159....
5. L EXITCLIPSt e e e e e e e e e e e e e e e e e e e 159....
7.5.2 GEICCLIPS......ciiiiiitteeiiee ettt e nnnnnnes 159....
T.5.3 PHNICLIPS......eeiiiitiieee ettt e e e e e e e e e e e 160....
7.5.4 UNQEICCLIPSo 160....
7.6 Router Handling FUNCLIOMNS............uuuiiiiiiiei e e e e e e e e 161...
7.6.1 ACHVALEROULEL.... oot e e e e e e e e e e eees 161....
7.6.2 AAAROULEE ...ttt e e e e e e e e e e e e e e e e e e s e e annnes 162....
7.6.3 DEACHVAIEROULEN........cciiiieeeeeeeeii e e e e e e e e e e e e e eeeeeenenes 163...
7.6.4 DEICIEROULEL.......uuiiiiiiiiiiieiiiiee e e e e e e e e e e e e e e 163....
Section 8 - MemOory ManAgeMENL.........uuuiiiieeeeeeeeeeeeeeeeiieiiienrs s s s e e e e e e e e eeeeeeeeeneennnnnas 165...
8.1 HOW CLIPS USES MEMOLY.....cetuiiieiiieiiiiee et e et e e e e e e e ennnanas 165...
8.2 Standard Memory FUNCHONS.coooieiiiieieeeeeeis e 1686...
8.2.1 GEtCONSEIVEMEMOLY. iieieiiti ettt e e e e e e e e e e e e eern e 166...
8.2.2 MEMREQUESIS.cetiiee ettt e et e e e e e e b e e e e e eaeaans 166....
B.2.3 MEMUSEM......ci it e e e e e e as 167.....
8.2.4 ReICASEMEIMottt a e e e e e e 167....

Viii Table of Contents

JSC-25012

8.2.5 SEtCONSEIVEMEIMAQLYcieiiieiiii ettt e e e e e e eaans 168...
8.2.6 SetOUtOfMEMOIYFUNCHQN...... .ot e eeeeeeaeees 168..
Appendix A - Language Integration LiStINGS........coviiiiiieeeiieiiciieiiiiiiiiesss e e e e e e e e e eeeeeeaennns 171.
A.1 Ada Interface Package for CLIPS..........ooo e 171.
A.2 FORTRAN Interface Package for VAX VMS.......ccooiiiiiiiiiiiiieee e 175
A.3 Function to Convert C Strings for VMS Ada or FORTRAN..........ceeeeeiiiiiiiiiieiines 179
Appendix B - I/O ROULEr EXAMPIES......uuuiiiiiiiiiiiiiiiieiee e 181..
B.1 DribBIe SYSIEML... ..o 181....
B.2 Better Dribble SySteml..........oov i 184....
B.3 BAtCh SYStEIM... ..ot 185.....
B.4 SiMple WINAOW SYSTEIML......uviiiiiiiiiiiiiieee et 187...
Appendix C - Differences Between Versions 5.1 and 6.0.............ccccccvvviiiiiiiiiiiieiieeeeenn. 193
10 = OO 199

CLIPS Advanced Programming Guide ¢

JSC-25012

Preface

The History of CLIPS

The origins of the C Language Integrated Production System (CLIPS) date back to 1984 at
NASA’s Johnson Space Center. At this time, the Artificial Intelligence Section (now the
Software Technology Branch) had developed over a dozen prototype expert systems applications
using state-of-the-art hardware and software. However, despite extensive demonstrations of the
potential of expert systems, few of these applications were put into regular use. This failure to
provide expert systems technology within NASA’s operational computing constraints could
largely be traced to the use of LISP as the base language for nearly al expert system software
tools at that time. In particular, three problems hindered the use of LISP based expert system
tools within NASA: the low availability of LISP on a wide variety of conventional computers,
the high cost of state-of-the-art LISP tools and hardware, and the poor integration of LISP with
other languages (making embedded applications difficult).

The Artificial Intelligence Section felt that the use of a conventional language, such as C, would
eliminate most of these problems, and initially looked to the expert system tool vendors to
provide an expert system tool written using a conventional language. Although a number of tool
vendors started converting their tools to run in C, the cost of each tool was still very high, most
were restricted to a small variety of computers, and the projected availability times were
discouraging. To meet all of its needs in a timely and cost effective manner, it became evident
that the Artificial Intelligence Section would have to develop its own C based expert system tool.

The prototype version of CLIPS was developed in the spring of 1985 in alittle over two months.

Particular attention was given to making the tool compatible with expert systems under
development at that time by the Artificial Intelligence Section. Thus, the syntax of CLIPS was

made to very closely resemble the syntax of a subset of the ART expert system tool developed by
Inference Corporation. Although originally modelled from ART, CLIPS was developed entirely

without assistance from Inference or access to the ART source code.

The original intent of the prototype was to gain useful insight and knowledge about the
construction of expert system tools and to lay the groundwork for the construction of a fully

usable tool. The CLIPS prototype had numerous shortcomings, however, it demonstrated the
feasibility of the project concept. After additional development, it became apparent that sufficient
enhancements to the prototype would produce a low cost expert system tool that would be ideal

for the purposes of training. Another year of development and internal use went into CLIPS
improving its portability, performance, and functionality. A reference manual and user’s guide

were written during this time. The first release of CLIPS to groups outside of NASA, version 3.0,
occurred in the summer of 1986.

CLIPS Advanced Programming Guide Xi

CLIPS Reference Manual

Further enhancements transformed CLIPS from a training tool into a tool useful for the
development and delivery of expert systems as well. Versions 4.0 and 4.1 of CLIPS, released
respectively in the summer and fall of 1987, featured greatly improved performance, external
language integration, and delivery capabilities. Version 4.2 of CLIPS, released in the summer of

1988, was a complete rewrite of CLIPS for code modularity. Also included with this release were
an architecture manual providing a detailed description of the CLIPS software architecture and a

utility program for aiding in the verification and validation of rule-based programs. Version 4.3

of CLIPS, released in the summer of 1989, added still more functionality.

Originally, the primary representation methodology in CLIPS was a forward chaining rule lan-
guage based on the Rete algorithm (hence the Production System part of the CLIPS acronym).
Version 5.0 of CLIPS, released in the spring of 1991, introduced two new programming
paradigms. procedural programming (as found in languages such as C and Ada) and
object-oriented programming (as found in languages such as the Common Lisp Object System
and Smalltalk). The object-oriented programming language provided within CLIPS is called the
CLIPS Object-Oriented Language (COOL). Version 5.1 of CLIPS, released in the fall of 1991,
was primarily a software maintenance upgrade required to support the newly developed and/or
enhanced X Window, MS-DOS, and Macintosh interfaces.

Because of its portability, extensibility, capabilities, and low-cost, CLIPS has received
widespread acceptance throughout the government, industry, and academia. The development of

CLIPS has helped to improve the ability to deliver expert system technology throughout the

public and private sectors for a wide range of applications and diverse computing environments.

CLIPS is being used by over 4,000 users throughout the public and private community including:
all NASA sites and branches of the military, numerous federal bureaus, government contractors,
universities, and many private companies. CLIPS is available at a nomina cost through
COSMIC, the NASA software distribution center (for more on COSMIC, see appendix E of the

Basic Programming Guide

CLIPS Version 6.0

Version 6.0 of CLIPS contains five major enhancements. First, instances of user-defined classes
in COOL can be pattern-matched on the left-hand side of rules. Second, CLIPS now contains
considerable support for knowledge based systems software engineering. Support is now
provided for building modular systems and many of the features previousy available in CRSV
are now directly supported in CLIPS (such as constraint consistency among uses of the same
variable). Third, deftemplates can now have more than one multifield slot. Fourth, it is now
possible to nest other conditional elements within a not conditional element and two new
conditional elements, existsand forall , are supported. Fifth, a Windows 3.1 CLIPS interface is
now available for PC compatible computers. In addition, an MS-DOS 386 version of CLIPS is
available which can use extended memory. For a detailed listing of differences between versions
5.1 and 6.0 of CLIPS, refer to appendix D of the Basic Programming Guide and appendix C of
the Advanced Programming Guide

Xii Preface

JSC-25012

CLIPS Documentation
Three documents are provided with CLIPS.
* TheCLIPS Reference Manualhich is split into the following parts:

* Volume | - The Basic Programming Guide, which provides the definitive description of
CLIPS syntax and examples of usage.

* Volume Il - The Advanced Programming Guide, which provides detailed discussions of
the more sophisticated features in CLIPS and is intended for people with extensive
programming experience who are using CLIPS for advanced applications.

« Volume Ill - The Interfaces Guide, which provides information on machine-specific
interfaces.

e The CLIPS User’'s Guide which provides an introduction to CLIPS rule-based and
object-oriented programming and is intended for people with little or no expert system
experience.

* The CLIPS Architecture Manual which provides a detailed description of the CLIPS
software architecture. This manual describes each module of CLIPS in terms of functionality
and purpose. It is intended for people with extensive programming experience who are
interested in modifying CLIPS or who want to gain a deeper understanding of how CLIPS
works.

CLIPS Advanced Programming Guide Xiii

JSC-25012

Acknowledgements

As with any large project, CLIPS is the result of the efforts of numerous people. The primary
contributors have been: Robert Savely, previous branch chief of the STB and now chief scientist
of advanced software technology at JSC, who conceived the project and provided overall
direction and support; Chris Culbert, current branch chief of the STB, who managed the project,
wrote the original CLIPS Reference Manual, and designed the origina version of CRSV; Gary
Riley, who designed and developed the rule-based portion of CLIPS, co-authored the CLIPS
Reference Manual and CLIPS Architecture Manual, and developed the Macintosh interface for
CLIPS; Brian Donnell, who designed and developed the CLIPS Object Oriented Language
(COOL), co-authored the CLIPS Reference Manual and CLIPS Architecture Manual, and
developed the previous MS-DOS interfaces for CLIPS; Bebe Ly, who was responsible for
maintenance and enhancements to CRSV and is now responsible for developing the X Window
interface for CLIPS; Chris Ortiz, who developed the Windows 3.1 interface for CLIPS; Dr.
Joseph Giarratano of the University of Houston-Clear Lake, who wrote the CLIPS User’s Guide
and Frank Lopez, who wrote the original prototype version of CLIPS.

Many other individuals contributed to the design, development, review, and general support of
CLIPS, including: Jack Aldridge, Carla Armstrong, Paul Baffes, Ann Baker, Stephen
Baudendistel, Les Berke, Tom Blinn, Marlon Boarnet, Dan Bochder, Bob Brown, Barry
Cameron, Tim Cleghorn, Mgor Paul Condit, Maor Steve Cross, Andy Cunningham, Dan
Danley, Mark Engelberg, Kirt Fields, Ken Freeman, Kevin Greiner, Ervin Grice, Sharon Hecht,
Patti Herrick, Mark Hoffman, Grace Hua, Gordon Johnson, Phillip Johnston, Sam Juliano, Ed
Lineberry, Bowen Loftin, Linda Martin, Daniel McCoy, Terry McGregor, Becky McGuire, Scott
Meadows, C. J. Melebeck, Paul Mitchell, Steve Mueller, Cynthia Rathjen, Eric Raymond, Reza
Razavipour, Marsha Renals, Monica Rua, Tim Saito, Gregg Swietek, Eric Taylor, James
Villarreal, Lui Wang, Bob Way, Jim Wescott, Charlie Wheeler, and Wes White.

CLIPS Advanced Programming Guide XV

JSC-25012

Section 1 - Introduction

This manual is th&dvanced Programming Guider CLIPS. It is intended for users interested

in the more sophisticated features of CLIPS. It is written with the assumption that the user has a
complete understanding of the basic features of CLIPS and a background in programming. Many
sections will not be understandable without a working knowledge of C. Knowledge of other
languages also may be helpful. The information presented here will require some experience to
understand, but every effort has been made to implement capabilities in a simple manner
consistent with the portability and efficiency goals of CLIPS.

Section 2 describes how to install and tailor CLIPS to meet specific needs. Section 3 of this
document describes how to add user-defined functions to a CLIPS expert system. Section 4
describes how to embed a CLIPS application in a C program. Section 5 describes how to create
run-time CLIPS programs. Section 6 discusses integrating CLIPS with languages other than C.
Section 7 details the input/ output (1/0O) router system used by CLIPS and how the user can
define his own 1/O routers. Section 8 discusses CLIPS memory management.

Not all of the features documented here will be of use to all users. Users should pick those areas
which are of specific use to them. It is advised that users complddasieProgramming Guide
before reading this manual.

1.1 WARNING ABOUT INTERFACING WITH CLIPS

CLIPS provides numerous methods for integrating with user-defined code. As with any powerful
capability, some care must be taken when using these features. By providing users with the
ability to access internal information, we have also opened the door to the possibility of users
corrupting or destroying data that CLIPS needs to work properly. Users are advised to be careful
when dealing with data structures or strings which are returned from calls to CLIPS functions.
Generdly, these data structures represent useful information to CLIPS and should not be
modified or changed in any way except as described in this manual. A good rule of thumb is to
duplicate in user-defined storage space every piece of information taken out of or passed into
CLIPS. In particular, do not store pointers to strings returned by CLIPS as part of a permanent
data structure. When CLIPS performs garbage collection on symbols and strings, the pointer
reference to the string may be rendered invalid. To store a permanent reference to a string,
allocate storage for a copy of the string and then copy the string returned by CLIPS to the copy’s
storage area.

1.2 COMPATIBILITY WITH CLIPS VERSION 5.1

There are significant differences in external integration between CLIPS 5.1 and CLIPS 6.0. It is
recommended that you completely scan the Advanced Programming Guide and carefully read
Section 3 before converting user code from previous versions of CLIPS. Numerous changes have

CLIPS Advanced Programming Guide 1

CLIPS Reference Manual

been made to standardize the naming conventions of access functions, simplify certain
operations, and provide additional functionality. Because many of the changes involved changing
function names for consistency, the header file cmptblty.h has been provided (which should be
included after the clips.h header file). This file provides macro definitions which map old
functions and macros into CLIPS 6.0 functions and macros. Note that the cmptblty.h header file

Is provided only as a convenient mechanism for quickly upgrading old user code to run with

CLIPS 6.0. It is recommended that old code be eventually converted to take advantage of the

new access functions and macros.

1.3 USING ANSI PROTOTYPES

CLIPS 6.0 supports ANSI function prototypes. When including CLIPS header files, you can
indicate whether prototypes should be used by defining the ANSI_ COMPILER flag to be 1
within the setup.hheader file. The setup.hheader file is automatically included when the clips.h
header file is used.

2 Section 1 - Introduction

JSC-25012

Section 2 - Installing and Tailoring CLIPS

This section describes how to install and tailor CLIPS to meet specific needs.

2.1 INSTALLING CLIPS

A typical CLIPS package includes both documentation and a number of floppy disks in either the
MS-DOS 2.1 format or the Macintosh format. The floppy disks contain a CLIPS executable,
examples of CLIPS programs, and the CLIPS source code. Users shouldmake copies of the
distribution disks. If CLIPSisto be used on a Macintosh, the executable may be copied to a hard

disk or to another floppy disk. If CLIPS is to be used on a MS-DOS machine, the executable may
be copied using the installation program provided on the disk (see the readme.txt file on the disk

for more details). No other installation is required to run the standard version of CLIPS. To tailor

CLIPS or to ingtall it on another machine, the user must port the source code and create a new
executable version.

Internal testing of CLIPS covers many different hardware/software environments, including

* Sun Sparcstation running UNIX

 IBM PC 386 running DOS 5.0 with Zortech C++ v3.1 and Microsoft Windows 3.1 with
Borland C++ v4.0

* Apple Macintosh II1fx and Power Macintosh running System 7.5 using Symantec C 7.0.3,
Symantec C 8.0, and CodeWarrior 5.0

CLIPS was designed specifically for portability and has been installed on numerous other
computers without making modifications to the source code. It shouldrun on any system which
supports a full Kernighan and Ritchie (K&R) C compiler, and it will run with any C compiler
that is compatible with the ANSI C standard. CLIPS cannotbe compiled using strict C++
compilers. C++ is not a proper superset of ANSI C, and therefore some ANSI compliant code
cannot be compiled by strict C++ compilers. Specificaly, old style K&R function declarations
either do not compile or have different meaningsin C++ than in ANSI C. CLIPS usesK&R style
function definitions so that it will compile on both K&R and ANSI C compilers. Also, some
compilers have extended syntax to support a particular platform which will add additional
reserved words to the C language. In the event that this extended syntax conflicts with the CLIPS
source, the user will have to edit the code. This usually only involves aglobal search-and-replace
of the particular reserved word. The following steps describe how to create a new executable
version of CLIPS:

1) Load the source code onto the user's system
The following C source files are necessary to set up the basic CLIPS system:

agenda.h analysis.h argacces.h bload.h

CLIPS Advanced Programming Guide 3

CLIPS Reference Manual

bmathfun.h
classfun.h
clips.h
commline.h
constrnt.h
cstrccom.h
cstrncmp.h
default.h
dffctbsc.h
dffnxbin.h
dffnxpsr.h
ed.h
exprnbin.h
extobj.h
factcom.h
factmch.h
factrhs.h
genrcbin.h
genrcfun.h
globlcmp.h
immthpsr.h
insfile.h
insmult.h
lgcldpnd.h
modulbsc.h
modulutl.h
msgpsr.h
objbin.h
objrtbld.h
objrtmch.h
prcdrfun.h
reteutil.h
rulebld.h
rulecstr.h
rulepsr.h
strngfun.h
symbol.h
tmpltcmp.h
tmpltihs.h
watch.h

agenda.c
bmathfun.c

bsave.h
classinf.h
clipsmem.h
conscomp.h
crstrtgy.h
cstrcpsr.h
cstrnops.h
defins.h
dffctcmp.h
dffnxcmp.h
dfinsbin.h
engine.h
exprnops.h
factbin.h
factgen.h
factmngr.h
filecom.h
genrccmp.h
genrcpsr.h
globlcom.h
incrrset.h
insfun.h
iInspsr.h
match.h
modulcmp.h
msgcom.h
multifld.h
objcmp.h
objrtcmp.h
pattern.h
prcdrpsr.h
retract.h
rulebsc.h
ruledef.h
scanner.h
strngrtr.h
sysdep.h
tmpltcom.h
tmpltpsr.h

analysis.c
bsave.c

classcom.h
classini.h
clsltpsr.h
constant.h
cstrchin.h
cstrnbin.h
cstrnpsr.h
developr.h
dffctdef.h
dffnxexe.h
dfinscmp.h
evaluatn.h
exprnpsr.h
factbld.h
facthsh.h
factprt.h
filertr.h
genrccom.h
globlbin.h
globldef.h
inherpsr.h
insmngr.h
insquery.h
miscfun.h
moduldef.h
msgfun.h
multifun.h
object.h
objrtfnx.h
pprint.h
prntutil.h
router.h
rulecmp.h
ruledit.h
setup.h
symblbin.h
tmpltbin.h
tmpltdef.h
tmpltrhs.h

argacces.c
classcom.c

Section 2 - Installing and Tailoring CLIPS

classexm.h
classpsr.h
cmptblty.h
constrct.h
cstrccmp.h
cstrnchk.h
cstrnutl.h
dffctbin.h
dffctpsr.h
dffnxfun.h
drive.h
expressn.h
extnfunc.h
factcmp.h
factlhs.h
factrete.h
generate.h
genrcexe.h
globlbsc.h
globlpsr.h
inscom.h
insmoddp.h
insqypsr.h
modulbin.h
modulpsr.h
msgpass.h
network.h
objrtbin.h
objrtgen.h
prccode.h
reorder.h
rulebin.h
rulecom.h
rulelhs.h
shrtinkn.h
symblcmp.h
tmpltbsc.h
tmpltfun.h
utility.h

bload.c
classexm.c

classfun.c
clsltpsr.c
constrnt.c
cstrepsr.c
cstrnops.c
defins.c
dffctcmp.c
dffnxcmp.c
dfinsbin.c
edmain.c
emathfun.c
exprnbin.c
factbin.c
factgen.c
factmngr.c
filecom.c
genrccmp.c
genrcpsr.c
globlcom.c
incrrset.c
insfun.c
inspsr.c
lgcldpnd.c
modulbin.c
modulpsr.c
msgpass.c
objbin.c
objrtcmp.c
pattern.c
prcdrpsr.c
reteutil.c
rulebld.c
rulecstr.c
rulepsr.c
symblbin.c
textpro.c
tmpltcom.c
tmpltpsr.c

classinf.c
commline.c
crstrigy.c
cstrnbin.c
cstrnpsr.c
developr.c
dffctdef.c
dffnxexe.c
dfinscmp.c
edmisc.c
engine.c
exprnops.c
factbld.c
facthsh.c
factprt.c
filertr.c
genrccom.c
globlbin.c
globldef.c
inherpsr.c
insmngr.c
insquery.c
main.c
modulbsc.c
modulutl.c
msgpsr.c
objcmp.c
objrtfnx.c
pprint.c
prdctfun.c
retract.c
rulebsc.c
ruledef.c
scanner.c
symblcmp.c
tmpltbin.c
tmpltdef.c
tmpltrhs.c

classini.c
conscomp.c
cstrchin.c
cstrnchk.c
cstrnutl.c
dffctbin.c
dffctpsr.c
dffnxfun.c
drive.c
edstruct.c
evaluatn.c
exprnpsr.c
factcmp.c
factlhs.c
factrete.c
generate.c
genrcexe.c
globlbsc.c
globlpsr.c
inscom.c
insmoddp.c
insqypsr.c
memory.c
modulcmp.c
msgcom.c
multifid.c
objrtbin.c
objrtgen.c
prccode.c
prntutil.c
router.c
rulecmp.c
ruledlt.c
strngfun.c
symbol.c
tmpltbsc.c
tmpltfun.c
utility.c

classpsr.c
constrct.c
cstrccom.c
cstrncmp.c
default.c
dffctbsc.c
dffnxbin.c
dffnxpsr.c
edbasic.c
edterm.c
expressn.c
extnfunc.c
factcom.c
factmch.c
factrhs.c
genrcbin.c
genrcfun.c
globlcmp.c
immthpsr.c
insfile.c
insmult.c
iofun.c
miscfun.c
moduldef.c
msgfun.c
multifun.c
objrtbld.c
objrtmch.c
prcdrfun.c
reorder.c
rulebin.c
rulecom.c
rulelhs.c
strngrtr.c
sysdep.c
tmpltcmp.c
tmpltlhs.c
watch.c

JSC-25012

Additional files must also be included if one of the machine specific user interfaces is to be
set up. See the Utilities and Interfaces Guide for details on compiling the machine specific

interfaces.

CLIPS Advanced Programming Guide

CLIPS Reference Manual

2) Modify all include statements (if necessary)
All of the “.c” files and most of the “.h" files have #include statements. These #include
statements may have to be changed to either match the way the compiler searches for
include files or to include a different ".h" file for anon-ANSI C compiler. Note: If an ANS|
C compiler is being used and the compiler is set up properly, this step should be
unnecessary.

3) Tailor CLIPS environment and/or features

Edit the setup.h file and set any special options. CLIPS uses compiler directives to allow
machine-dependent features. The first flag in the setup.h file tells CLIPS on what kind of
machine the code is being compiled. The default setting for this flag is GENERIC, which
will create a version of CLIPS that will run on any computer. The user may set this flag for
the user's type of system. If the system type is unknown, the first flag should be set to
GENERIC. If you change the system type to anything other than GENERIC, make sure that
the version number of your compiler is greater than or equal to the version number listed in
the setup.h file (as earlier versions of a compiler may not support some system dependent
features). Other flags in the setup.h file also alow a user to tailor the features in CLIPS to
specific needs. For more information on using the flags, see section 2.2

4) Compile all of the ".c" files to object code

Use the standard compiler syntax for the user's machine. The ".h" files are include files used

by the other files and do not need to be compiled. Some options may have to be set,
depending on the compiler. Many microcomputer compilers support either large or small
memory compilation. CLIPS should alwaysuse the large memory option. Other compilers

default to 8-character variable names but allow more with an option. CLIPS uses variables

that require more than 8 characters to be distinctly identified; if necessary, this option should
be set.

If user-defined functions are needed, compile the source code for those functions as well and
modify the UserFunctions definition in main.c to reflect the user's functions (see section 3
for more on user-defined functions).

5) Create the interactive CLIPS executable element
To create the interactive CLIPS executable, link together al of the object files. This
executable will provide the interactive interface defined in section 2.1 of the Basic
Programming Guide. On some machines, the default stack size is too small to run CLIPS
properly. Usualy, the default stack size can be changed during the link process. At least
4000 bytes of stack size are needed to run CLIPS reasonably.

2.1.1 Additional Considerations

Although compiling CLIPS should not be difficult even for inexperienced C programmers, some
non-obvious problems can occur. One type of problem is linking with inappropriate system

6 Section 2 - Installing and Tailoring CLIPS

JSC-25012

libraries. Normally, default libraries are specified through the environment; i.e., not specified as a
part of the compile/link process. On occasion, the default system libraries are inappropriate for

use with CLIPS. For example, when using a compiler which supports different memory models,

be sure to link with the system libraries that match the memory model under which the CLIPS

code was compiled. The same can be said for floating-point models. Some computers provide
multiple ways of storing floating-point numbers (typically differing in accuracy or speed of proc-

essing). Be sure to link with system libraries that use the same storage formats with which the

CLIPS code was compiled. Some additional considerations for compiling CLIPS with specific
compilers and/or operating systems are described following.

UNIX

If the EX_MATH compiler directive is enabled, then the -Im option must be used when
compiling CLIPS with the cc command. Similary, if the CLP_EDIT compiler directive is
enabled, the -ltermcap option must be used when compiling CLIPS. If all of the CLIPS source
code is contained in the same directory and the compiler directives are set to their default values
in thesetup.hfile, then the following command line will compile CLIPS

cc -o clips *.c -Im -ltermcap

Macintosh (Symantec C V7.03 and V8.0)

Enable the Separate STRS and Far DATA options using the Set Project Type... menu item.
Under this same menu item, set the Partition (K) size to at least 1000 and enable the 32-Bit
Compatible flag in the SIZE Flags pop-up menu. If the Macintosh interface is being compiled,
enable the MultiFinder Aware, Background NULL Events Suspend & Resume Events, and
HighLevelEvent-Aware flags in theSIZE flag pop-up menu.

When using Symantec C 8.0, disable global optimizations. The CLIPS validation test suite fails
when global optimizations are enabled.

Macintosh (Metrowerks CodeWarrior V5.0)

For unknown reasons, the 680x0 version of CodeWarrior was never able to create a 680x0
executable that could complete the CLIPS validation suite. If you need to create a 68K version of
CLIPS, it is recommended that you use Symantec C 7.0 to do so.

Macintosh (MPW C V3.2)
When compiling the CLIPS source files, useh@option. When linking, use thart option.

IBM PC (Microsoft C V6.0A with MS-DOS)

When compiling the CLIPS source files, use the /AL option. When linking, use the
ISEGMENTS:256 and /STACK:8000 options (the stack option provides a reasonable amout of
space, however, this may need to be adjusted up or down depending upon the type of
applications being run—applications using deffunctions, generic functions, and message-
handlers will generally require more stack space). With the DOS 640K memory limit, it is not

CLIPS Advanced Programming Guide 7

CLIPS Reference Manual

possible to create an executable containing all of the CLIPS features. Some features must be
disabled (see section 2.2).

IBM PC (Borland C++ V3.1 with MS-DOS)

When compiling and linking the CLIPS source files, use the -ml and -d options. With the DOS
640K memory limit, it is not possible to create an executable containing all of the CLIPS
features. Some features must be disabled (see section 2.2).

IBM PC (Zortech C++ V3.1 with MS-DOS)

There is a compiler bug which manifests itself when dead code optimizations are performed.
When compiling the CLIPS source files, specify the -o-dc option to remove dead code
optimizations. In addition, do not use the -s option (stack overflow checking doesn’'t work
properly for functions called from an interrupt handler). Use the -mx option when compiling and
the=160000ption when linking.

IBM PC (Borland C++ V4.0 with MS-WINDOWS)

When compiling the CLIPS source files, set the following options. For Code Generation:
Allocate enums as ints and Duplicate strings merged. For Memory Model: Large, Never
Assume SS Equals DS, Automatic Far Data, and Far Data Threshold set to 10 Bytes. For
Entry/Exit Code: Windows smart callbacks, all functions exportable.

2.2 TAILORING CLIPS

CLIPS makes use of compiler directives to allow easier porting and recompiling of CLIPS.
Compiler directives allow the incorporation of system-dependent features into CLIPS and also
make it easier to tailor CLIPS to specific applications. All available compiler options are
controlled by a set of flags defined in tetup.hfile.

The first flag insetup.hindicates on what type of compiler/machine CLIPS is to run. The source
code is sent out with the flag for GENERIC CLIPS turned on. When compiled in this mode, all
system-dependent features of CLIPS are excluded and the program should run on any system. A
number of other flags are available in this file, indicating the types of compilers/machines on
which CLIPS has been compiled previously. If the user's implementation matches one of the
available flags, set that flag to 1 and turn the GENERIC flag off (set it to 0). The code for most

of the features controlled by the compiler/machine-type flag is inytbeep.dile.

Many other flags are provided setup.h Each flag is described below.

ANSI_COMPILER This flag indicates whether the compiler being used follows the
draft proposed ANSI C standards (including the ANSI C libraries).
If this flag is on, the compiler is assumed to be a fully ANS
standard compiler, otherwise it is assumed to be aK & R standard
compiler. This is on in the standard CLIPS executable.

8 Section 2 - Installing and Tailoring CLIPS

JSC-25012

RUN_TIME This flag will create a run-time version of CLIPS for use with
compiled constructs. It should be turned on only after the
constructs-to-c function has been used to generate the C code
representation of the constructs, but beforecompiling the constructs
C code. When used, about 90K of memory can be saved from the
basic CLIPS executable. See section 5 for a description of how to
use this. This is off in the standard CLIPS executable.

DEFRULE_CONSTRUCT
This flag controls the use of the defrule construct. If it is off, the
defrule construct is not recognized by CLIPS. This is on in the
standard CLIPS executable.

CONFLICT_RESOLUTION_STRATEGIES
This flag controls the availability of conflict resolution strategies
(see sections 5.2 and 5.3 of the Basic Programming Guide) for use
with the defrule construct. If it is off, then the depth conflict
resolution strategy is the only strategy used and the functions set-
strategy and get-strategy are not available. Thisis on in the standard
CLIPS executable.

DYNAMIC_SALIENCE
This flag controls the availability of dynamic salience (see sections
5.2 and 5.4.9 of the Basic Programming Guide) for use with the
defrule construct. If it is off, then dynamic salience can not be used
and the functions refresh-agenda, get-salience-evaluation, and get-
salience-evaluation are not available. This is on in the standard
CLIPS executable.

INCREMENTAL_RESET

This flag controls the availability of incremental reset (see sections
5.1 and 12.1.7 of the Basic Programming Guide) for use with the
defrule construct. If it is off, then newly defined rules are not aware
of facts or instances that were created before the rule was defined.
In addition, the functions set-incremental-reset and get-incremental -
reset are not available if this flag is off. Thisis on in the standard
CLIPS executable.

LOGICAL_DEPENDENCIES
This flag controls the availability of logical dependencies (see
section 5.4.8 of the Basic Programming Guide) for use with the
defrule construct. If it is off, then the logical CE cannot be used on
the LHS of a rule and the functions dependencies and dependents
are not available. This is on in the standard CLIPS executable.

CLIPS Advanced Programming Guide 9

CLIPS Reference Manual

DEFFACTS_CONSTRUCT
This flag controls the use of deffacts. If it is off, deffacts are not
allowed which can save some memory and performance during
resets. This is on in the standard CLIPS executable. If this flag is
off, the (initial-fact) fact is still created during a reset if the
DEFTEMPLATE_CONSTRUCT flag is on.

DEFTEMPLATE_CONSTRUCT
This flag controls the use of deftemplate. If it is off, deftemplate is
not allowed which can save some memory. This is on in the
standard CLIPS executable.

DEFGLOBAL_CONSTRUCT
This flag controls the use of defglobal. If it is off, defglobal is not
allowed which can save some memory. This is on in the standard
CLIPS executable.

DEFFUNCTION_CONSTRUCT
This flag controls the use of deffunction. If it is off, deffunction is
not allowed which can save some memory. This is on in the
standard CLIPS executable.

DEFGENERIC_CONSTRUCT
This flag controls the use of defgeneric and defmethod. If it is off,
defgeneric and defmethod are not allowed which can save some
memory. This is on in the standard CLIPS executable.

IMPERATIVE_METHODS

This flag determines if the following functions are available for use
in generic function methods: next-methodp call-next-method
override-next-method and call-specific-method These functions
allow imperative control over the generic dispaich by calling
shadowed methods (see section 8.5.3 of the Basic Programming
Guide. This flag is on in the standard CLIPS executable. Turning
this flag off can save some memory and marginally increase the
speed of the generic dispatch.

OBJECT_SYSTEM
Thisflag controls the use of defclass, definstances, and defmessage-
handler. If it is off, these constructs are not allowed which can save
some memory. If this flag is on, the MULTIFIELD FUNCTIONS
flag should also be on if you want to be able to manipulate
multifield slots. This is on in the standard CLIPS executable.

10 Section 2 - Installing and Tailoring CLIPS

JSC-25012

DEFINSTANCES_CONSTRUCT
This flag controls the use of definstances (see section 9.6.1.1 of the
Basic Programming Guide). If it is off, definstances are not allowed
which can save some memory and performance during resets. This
is on in the standard CLIPS executable. If this flag is off, the
[initial-object] instance is still created during a reset if the
INSTANCE_PATTERN_MATCHING flag is on.

IMPERATIVE_MESSAGE_HANDLERS

This flag determines if around message-handlers and the following
functions are available for use in object message dispatch:
next-handlerp, call-next-handler and override-next-handler.
These functions allow imperative control over the message dispatch
by calling shadowed message-handlers (see section 9.5.3 of the
Basic Programming Guide). This flag is on in the standard CLIPS
executable. Turning this flag off can save some memory and
marginally increase the speed of the message dispatch.

AUXILIARY_MESSAGE_HANDLERS
This flag determines if before and after message-handlers are
available for use in object message dispatch. These handler types
enhance declarative control over the message dispatch (see section
9.4.3 of the Basic Programming Guide). This flag is on in the
standard CLIPS executable. Turning this flag off can save some
memory and marginally increase the speed of the message dispatch.

INSTANCE_SET_QUERIES
This flag determines if the instance-set query functions are
available: any-instancep find-instance, find-all-instances
do-for-instance do-for-all-instances and
delayed-do-for-all-instances This is on in the standard CLIPS
executable. Turning this flag off can save some memory.

INSTANCE_PATTERN_MATCHING
This flag controls the ability to include object patterns on the LHS
of rules (see section 5.4.1.8 of the Basic Programming Guide). This
is on in the standard CLIPS executable. Turning this flag off can
save some memory.

BLOAD_INSTANCES
This flag controls the ability to load instances in binary format from
a file via the bload-instancescommand (see section 13.11.4.7 of
the Basic Programming Guide). This is on in the standard CLIPS
executable. Turning this flag off can save some memory.

CLIPS Advanced Programming Guide 11

CLIPS Reference Manual

BSAVE_INSTANCES
This flag controls the ability to save instances in binary format to a
file via the bsave-instancegommand (see section 13.11.4.4 of the
Basic Programming Guide). This is on in the standard CLIPS
executable. Turning this flag off can save some memory.

DEFMODULE_CONSTRUCT
This flag controls the use of the defmodule construct. If it is off,
then new defmodules cannot be defined (however the MAIN
module will exist). This is on in the standard CLIPS executable.

EX_MATH This flag indicates whether the extended math package should be
included in the compilation. If this flag is turned off (set to 0), the
final executable will be about 25-30K smaller, a consideration for
machines with limited memory. This is on in the standard CLIPS
executable.

CLP_TEXTPRO This flag controls the CLIPS text-processing functions. It must be
turned on to use the fetch, toss, and print-region functions in a
user-defined help system. It also must be turned on to use the
on-line help system. This is on in the standard CLIPS executable.

CLP_HELP If this flag is on, the on-line help system will be available from the
CLIPS top-level interface. When thisisturned on, the HELP_FILE
flag should be set to point to the full path name for the CLIPS help
file. This is on in the standard CLIPS executable.

CLP_EDIT This flag controls the integrated MicroEMACS editor. If it is turned
on, the editor will be available. If it is turned off, the editor will not
be available but about 40K of memory will be saved. NOTE: The
editor is machine dependent and will not run on all machines. See
the setup.hfile for a description of which machines can support the
editor. This is on in the standard CLIPS executable.

CONSTRUCT_COMPILER
This flag controls the construct compiler functions. If it is turned on,
constructs may be compiled to C code for use in a run-time module
(see section 5). This is off in the standard CLIPS executable.

BLOAD_ONLY This flag controls access to the binary and ASCII load commands
(bload and load). This would be used to save some memory in
systems which require binary load capability only. This flag is off in
the standard CLIPS executable.

12 Section 2 - Installing and Tailoring CLIPS

JSC-25012

BLOAD This flag controls access to the binary load command (bload). This
would be used to save some memory in systems which require
binary load but not save capability. This is off in the standard
CLIPS executable.

BLOAD_AND_BSAVE
This flag controls access to the binary load and save commands.
This would be used to save some memory in systems which require
neither binary load nor binary save capability. This is on in the
standard CLIPS executable.

BASIC 10 This flag controls access to the basic 1/0 functionsin CLIPS. These
functions are printout, read, open, and close. If thisflag is off, these
functions are not available. This would be used to save some
memory in systems which used custom I/O routines. Thisis on in
the standard CLIPS executable.

EXT_IO This flag controls access to the extended /O functions in CLIPS.
These functions are format and readline. If this flag is off, these
functions are not available. This would be used to save some
memory in systems which used custom I/O routines or only the
basic I/0O routines. This is on in the standard CLIPS executable.

MULTIFIELD_FUNCTIONS

This flag controls access to the multifield manipulation functionsin
CLIPS. These functions are subseq$, delete$, insert$, replace$,
explode$, implode$, nth$, member$, first$, rest$, progn$, and
subsetp. The function create$ is aways available regardless of the
setting of this flag. This would be used to save some memory in
systems which performed limited or no operations with multifield
values. This flag is on in the standard CLIPS executable.

STRING_FUNCTIONS
This flag controls access to the string manipulation functions in
CLIPS. These functions are str-cat, sym-cat, str-length, str-compare,
upcase, lowcase, sub-string, str-index, eval, and build. This would
be used to save some memory in systems which perform limited or
no operations with strings. This flag is on in the standard CLIPS
executable.

DEBUGGING_FUNCTIONS
This flag controls access to commands such as agenda, facts,
ppdefrule, ppdeffacts, etc. This would be used to save some

CLIPS Advanced Programming Guide 13

CLIPS Reference Manual

memory in BLOAD_ONLY or RUN_TIME systems. This flag is on
in the standard CLIPS executable.

BLOCK_MEMORY This option controls memory allocation. If the flag is on, memory is
allocated from the operating system in large blocks. This can
improve performance if the system memory alocation routines are
extremely inefficient or place arbitrary restrictions on the number of
memory allocations that can be made. This flag is off in the stan-
dard CLIPS executable.

WINDOW_INTERFACE
This flag indicates that a windowed interface is being used.
Currently, the help system uses this flag to determine whether it
should handle more processing by itself or allow the interface to
take care of more processing. This is off in the standard CLIPS
executable.

SHORT_LINK_NAMES

ANSI C compilers must be able to distinguish between identifiers
which use at least 31 significant characters. Some linkers, however,
use considerably fewer characters when determining name conflicts
(potentialy as few as 6 characters). If thisflag is on, then identifiers
which cannot be uniquely distinguished within 6 characters are
replaced with alternate names that are distinguishable with 6
characters. This is off in the standard CLIPS executable.

14 Section 2 - Installing and Tailoring CLIPS

JSC-25012

Section 3 - Integrating CLIPS with External Functions

One of the most important features of CLIPS is an ability to integrate CLIP@&xt&mal

functions or applications. This section discusses how to add external functions to CLIPS and

how to pass arguments to them and return values from them. A user can define external functions
for use by CLIPS at any place a function can normally be called. In fact, the vast majority of
system defined functions and commands provided by CLIPS are integrated with CLIPS in the
exact same manner described in this section. The examples shown in this section are in C, but
section 6 discusses how other languages can be combined with CLIPS. Prototypes for the
functions listed in this section can be included by usingliphs.h header file.

3.1 DECLARING USER-DEFINED EXTERNAL FUNCTIONS

All externalfunctions must be described to CLIPS so they can be properly accessed by CLIPS
programs. User-defined functions are described to CLIPS by modifying the function
UserFunctions This function is initially in the CLIP$&ain.c file and may be modified there or
moved to a user's file. WithidserFunctions a call should be made to tBefineFunction rou-

tine for every function which is to be integrated with CLIPS. The user's source code then can be
compiled and linked with CLIPS.

int DefineFunction(functionName,functionType,
functionPointer,actualFunctionName);

char *functionName, functionType, *actualFunctionName;
int (*functionPointer)();

An exampleUserFunctionsdeclaration follows:

UserFunctions()
I* */
[* Declare your C functions if necessary. */
I* */

extern double rta();
extern VOID *dummy();

I* */
[* Call DefineFunction to register user-defined functions. */
I* */

DefineFunction("rta”,'d",PTIF rta,"rta");
DefineFunction("mul",'I',PTIF mul,"mul");

}

The first argument t®efineFunctionis the CLIPS function name, a string representation of the
name that will be used when calling the function from within CLIPS.

CLIPS Advanced Programming Guide 15

CLIPS Reference Manual

The second argument is the type of the value which will be returned to CLIPS. Note that this is
not necessarily the same as the function type. Allowable return types are shown as follows:

Return Code Return Type Expected

External Address

Boolean

Character

Double Precision Float

Single Precision Float

Integer

Unknown Data Type (Symbol, String, or Instance Name Expected)
Unknown Data Type (Symbol or String Expected)
Long Integer

Multifield

Unknown Data Type (Integer or Float Expected)
Instance Name

String

Unknown Data Type (Any Type Expected)
Void—No Return Value

Symbol

Instance Address

X ST < cwo>S 3 —XxN———=-2000TQ

Boolean functions should return a value of type int (O for the symbol FALSE and any other value
for the symbol TRUE). String, symbol, instance name, external address, and instance address
functions should return a pointer of type VOID *. Character return values are converted by
CLIPS to a symbol of length one. Integer return values are converted by CLIPS to long integers
for internal storage. Single precision float values are converted by CLIPS to double precision
float values for internal storage. If a user function is not going to return a value to CLIPS, the
function should be defined as type VOID and this argument should be v for void. Returo types
andx are only available if the object system has been enabled (see section 2.2).

Function typeg, k, m n, andu are all passed a data object as an argument in which the return
value of function is stored. This allows a user defined function to return one of several possible
return types. Function typeis the most general and can return any data type. By convention,
function typeg, k, m, andn return specific data types. CLIPS will signal an error if one of these
functions return a disallowed type. See section 3.3.4 for more details on returning unknown data

types.
The third argument is a pointer to the actual function, the compiled function naegem

declaration of the function may be appropriate). The CLIPS name (first argument) need not be
the same as the actual function name (third argument). The macro identifier PTIF can be placed

16 Section 3 - Integrating CLIPS with External Functions

JSC-25012

in front of a function name to cast it as a pointer to a function returning an integer (primarily to
prevent warnings from compilers which allow function prototypes).

The fourth argument is a string representation of the third argument (the pointer to the actual C
function). This namehould be identicakto the third argument, but enclosed in quotation marks.

DefineFunction returns zero if the function was unsuccessfully called (e.g. bad function type
parameter), otherwise a non-zero value is returned.

User-defined functions are searched before system functions. If the user defines a function which
is the same as one of the defined functions already provided, the user function will be executed in
its place. Appendix A of thBasic Programming Guideontains a list of function names used by
CLIPS.

In place ofDefineFunction, theDefineFunction2 function can be used to provide additional
information to CLIPS about the number and types of arguments expected by a CLIPS function or
command.

int DefineFunction2(functionName,functionType,
functionPointer,actualFunctionName,
functionRestrictions);

char *functionName, functionType, *actualFunctionName;
int (*functionPointer)();
char *functionRestrictions

The first four arguments to DefineFunction2 are identica to the four arguments for
DefineFunction. The fifth argument is a restriction string which indicates the number and types
of arguments that the CLIPS function expects. The syntax format for the restriction string is

<min-args> <max-args> [<default-type> <types>*|

The values <min-args> and <max-args> must be specified in the string. Both values must either
be a character digit (0-9) or the character *. A digit specified for <min-args> indicates that the
function must have at least <min-args> arguments when called. The character * for this value
indicates that the function does not require a minimum number of arguments. A digit specified
for <max-args> indicates that the function must have no more than <max-args> arguments when
called. The character * for this value indicates that the function does not prohibit a maximum
number of arguments. The optional <default-type> is the assumed type for each argument for a
function call. Following the <default-type>, additional type values may be supplied to indicate
specific type values for each argument. The type codes for the arguments are as follows:

CLIPS Advanced Programming Guide 17

CLIPS Reference Manual

Type Code Allowed Types

External Address

Float

Instance Address, Instance Name, or Symbol
Float

Integer, Float, or Symbol
Instance Address, Instance Name, Fact Address, Integer, or Symbol
Integer

Symbol, String, or Instance Name
Symbol or String

Integer

Multifield

Integer or Float

Instance Name

Instance Name or Symbol
Symbol, String, or Multifield
String

Any Data Type

Symbol

Instance Address

Fact Address

Fact address, Integer, or Symbol

N X S cuwooo>S3 —XxN——3J3Q —+~0 QD

Examples
The restriction string for a function requiring a minimum of three arguments is:

II3*II
The restriction string for a function requiring no more than five arguments is:
||*5||

The restriction string for a function requiring at least three and no more than five arguments
(each of which must be an integer or float) is:

"35n"

The restriction string for a function requiring exactly six arguments (of which the first must be a
string, the third an integer, and the remaining arguments floats) is:

"66fsui”

18 Section 3 - Integrating CLIPS with External Functions

JSC-25012

3.2 PASSING ARGUMENTS FROM CLIPS TO EXTERNAL FUNCTIONS

Although arguments are listed directly following a function name within a function call, CLIPS
actually calls the function without any arguments. The arguments are stored internally by CLIPS
and can be accessed by calling the argument access functions. Access functions are provided to
determine both the number and types of arguments.

3.2.1 Determining the Number of Passed Arguments

User-defined functions should first determine that they have been passed the correct number of
arguments. Several functions are provided for this purpose.

int RtnArgCount();
int ArgCountCheck(functionName,restriction,count);
int ArgRangeCheck(functionName,min,max);

int restriction, count, min, max;
char *functionName;

A cal to RtnArgCount will return an integer telling how many arguments with which the
function was called. The function ArgCountCheck can be used for error checking if a function
expects a minimum, maximum, or exact number of arguments (but not a combination of these
restrictions). It returns an integer telling how many arguments with which the function was called
(or -1 if the argument restriction for the function was unsatisfied). The first argument is the name

of the function to be printed within the error message if the restriction is unsatisfied. The
restriction argument should be one of the values NO_MORE_THAN, AT_LEAST, or
EXACTLY. The countargument should contain a value for the number of arguments to be used

in the restriction test. The function ArgRangeCheckcan be used for error checking if afunction
expects a range of arguments. It returns an integer telling how many arguments with which the
function was called (or -1 if the argument restriction for the function was unsatisfied). The first
argument is the name of the function to be printed within the error message if the restriction is
unsatisfied. The second argument is the minimum number of arguments and the third argument is
the maximum number of arguments.

3.2.2 Passing Symbols, Strings, Instance Names, Floats, and Integers

Several access functions are provided to retrieve arguments that are symbols, strings, instance
names, floats, and integers.

char *RtnLexeme(argumentPosition);
double RtnDouble(argumentPosition);
long RtnLong(argumentPosition);

int argumentPosition;

CLIPS Advanced Programming Guide 19

CLIPS Reference Manual

A call to RtnLexemereturns a character pointer from either a symbol, string, or instance name
data type (NULL is returned if the type is not SYMBOL, STRING, or INSTANCE_NAME),
RtnDouble returns a floating-point number from either an INTEGER or FLOAT data type, and
RtnLong returns a long integer from either an INTEGER or FLOAT data type. The arguments
have to be requested one at a time by specifying each argument’s position number as the
argumentPositiorio RtnLexeme, RtnDouble, or RtnLong. If the type of argument is unknown,
another function can be called to determine the type. See section 3.2.3 for a further discussion of
unknown argument typeBo notstore the pointer returned BRtnLexemeas part of a

permanent data structure. When CLIPS performs garbage collection on symbols and strings, the
pointer reference to the string may be rendered invalid. To store a permanent reference to a
string, allocate storage for a copy of the string and then copy the string returRed_byeme

to the copy’s storage area.

Example
The following code is for a function to be called from CLIPS calladvhich will return the

area of a right triangle.

[* This include definition ~ */
#include "clips.h" * should start each file which */
[* has CLIPS functions in it */

/*

Use DefineFunction2("rta",'d',PTIF rta,"rta","22n");
*/

double rta()

double base, height;

I* */
[* Check for exactly two arguments. */
I* */

if (ArgCountCheck("rta",EXACTLY,2) == -1) return(-1.0);

I* */
* Get the values for the 1st and 2nd arguments. */
I* */

base = RtnDouble(1);
height = RtnDouble(2);

I* */
[* Return the area of the triangle. */
I* */

return(0.5 * base * height);
}

20 Section 3 - Integrating CLIPS with External Functions

JSC-25012

As previously shown, rta aso should be defined in UserFunctions If the value passed from
CLIPS s not the data type expected, an error occurs. Section 3.2.3 describes a method for testing
the data type of the passed arguments which would allow user-defined functions to do their own
error handling. Once compiled and linked with CLIPS, the function rta could be called as shown
following.

CLIPS> (rta 5.0 10.0)

25.0

CLIPS> (assert (right-triangle-area (rta 20.0 10.0)))
CLIPS> (facts)

f-0 (right-triangle-area 100.0)

For a total of 1 fact.

CLIPS>

3.2.3 Passing Unknown Data Types

Section 3.2.2 described how to pass data to and from CLIPS when the type of data is explicitly
known. It also is possible to pass parameters of an unknown data type to and from external
functions. To pass an unknown parameter to an external function, use the RtnUnknown
function.

#include "clips.h" [* or "evaluatn.h" */
DATA_OBJECT *RtnUnknown(argumentPosition, &argument);

int GetType(argument);

int GetpType(&argument);

int ArgTypeCheck(char *,argumentPosition,
expectedType,&argument);

char *DOToString(argument);
char *DOPToString(&argument);
double DOToDouble(argument);
double DOPToDouble(&argument);
float DOToFloat(argument);

float DOPToFloat(&argument);
long DOToLong(argument);

long DOPToLong(&argument);
int DOTolnteger(argument);

int DOPTolnteger(&argument);
VOID *DOToPointer(argument);
VOID *DOPToPointer(&argument);

int argumentPosition, expectedType;
DATA_OBJECT argument;

Function RtnUnknown should be called first. It copies the elements of the internal CLIPS
structure that represent the unknown-type argument into the DATA_OBJECT structure pointed
to by the second argument. It also returns a pointer to that same structure, passed as the second

CLIPS Advanced Programming Guide 21

CLIPS Reference Manual

argument. After obtaining a pointer to the DATA_OBJECT structure, a number of macros can be
used to extract type information and the arguments value.

MacrosGetType or GetpType can be used to determine the type of argument and will return an
integer (STRING, SYMBOL, FLOAT, INTEGER, MULTIFIELD, INSTANCE_ADDRESS,
INSTANCE_NAME, or EXTERNAL_ADDRESS) defined in the clips.h file. Once the data type
is known, the functions DOToDouble, DOPToDouble DOToFloat, or DOPToFloat (for
FLOAT), DOToString, or DOPToString (for STRING, SYMBOL, or INSTANCE_NAME),
DOToLong, DOPToLong, DOTolnteger, or DOPTolnteger (for INTEGER), and
DOToPointer and DOPToPointer (for INSTANCE_ADDRESS and EXTERNAL_ADDRESS)
can be used to extract the actual value of the variable from the DATA_OBJECT structure.
Accessing multifield values is discussed in section 3.2.4. Do not store the pointer returned by
DOToString or DOPToString as part of a permanent data structure. When CLIPS performs
garbage collection on symbols and strings, the pointer reference to the string may be rendered
invalid. To store a permanent reference to a string, alocate storage for a copy of the string and
then copy the string returned BYDToString or DOPToString to the copy’s storage area.

The function ArgTypeCheck can be used for error checking if afunction expects a specific type

of argument for a particular parameter. It returns a non-zero integer value if the parameter was of

the specified type, otherwise it returns zero. The first argument is the name of the function to be
printed within the error message if the type restriction is unsatisfied. The second argument is the
index of the parameter to be tested. The third argument is the type restriction and must be one of

the following CLIPS defined constants: STRING, SYMBOL, SYMBOL_OR_STRING, FLOAT,
INTEGER, INTEGER_OR_FLOAT, MULTIFIELD, EXTERNAL_ADDRESS,
INSTANCE_ADDRESS, INSTANCE_NAME, or INSTANCE_OR_INSTANCE_NAME. If the
FLOAT type restriction is used, then integer values will be converted to floating-point numbers.

If the INTEGER type restriction is used, then floating-point values will be converted to integers.

The fourth argument is a pointer to a DATA_OBJECT structure in which the unknown parameter
will be stored.

Example
The following function mul takes two arguments from CLIPS. Each argument should be either

an integer or a float. Float arguments are rounded and converted to the nearest integer. Once
converted, the two arguments are multiplied together and this value is returned. If an error occurs
(wrong type or number of arguments), then the value 1 is returned.

#include <math.h> [* ANSI C library header file */
#include "clips.h"

/*

Use DefineFunction2("'mul",'I',PTIF mul,"mul","22n");
*/

22 Section 3 - Integrating CLIPS with External Functions

JSC-25012

long mul()

DATA_OBJECT temp;
long firstNumber, secondNumber;

I* */
[* Check for exactly two arguments. */
I* */

if (ArgCountCheck("mul",EXACTLY,2) == -1)
{ return(1L); }

I* */
* Get the first argument using the ArgTypeCheck function. */

[* Return if the correct type has not been passed. */

I* */

if (ArgTypeCheck("'mul",1,INTEGER_OR_FLOAT,&temp) == 0)
{ return(1L); }

I* */
[* Convert the first argument to a long integer. If it's not */

[* an integer, then it must be a float (so round it to the */

[* nearest integer using the C library ceil function. */

I* */

if (GetType(temp) == INTEGER)
{ firstNumber = DOToLong(temp); }
else /* the type must be FLOAT */
{ firstNumber = (long) ceil(DOToDouble(temp) - 0.5); }

I* */
[* Get the second argument using the RtnUnknown function. */

[* Note that no type error checking is performed. */

I* */
RtnUnknown(2,&temp);

I* */

[* Convert the second argument to a long integer. If it's */
[* not an integer or a float, then it's the wrong type. */
I* */

if (GetType(temp) == INTEGER)

{ secondNumber = DOToLong(temp); }
else if (GetType(temp) == FLOAT)

{ secondNumber = (long) ceil(DOToDouble(temp) - 0.5); }
else

{ return(1L); }

CLIPS Advanced Programming Guide 23

CLIPS Reference Manual

I* */
/* Multiply the two values together and return the result. */
/*

*/

return (firstNumber * secondNumber);

}

Once compiled and linked with CLIPS, the functrmal could be called as shown following.

CLIPS> (mul 3 3)
9

CLIPS> (mul 3.1 3.1)
9

CLIPS> (mul 3.8 3.1)
12

CLIPS> (mul 3.8 4.2)
16

CLIPS>

3.2.4 Passing Multifield Values

Data passed from CLIPS to an external function may be stored in multifield values. To access a
multifield value, the user first must call RtnUnknown or ArgTypeCheck to get the pointer. If
the argument is of type MULTIFIELD, several macros can be used to access the values of the
multifield value.

#include "clips.h" * or "evaluatn.h" */

int GetDOLength(argument);

int GetpDOLength(&argument);

int GetDOBegin(argument);

int GetpDOBegin(&argument);

int GetDOEnNd(argument);

int GetpDOENd(&argument);

int GetMFType(multifieldPtr,fieldPosition);
VOID *GetMFValue(multifieldPtr,fieldPosition);

DATA OBJECT argument;
VOID *multifieldPtr;
int fieldPosition;

Macros GetDOLength and GetpDOLength can be used to determine the length of a
DATA_OBJECT or DATA_OBJECT_PTR respectively. The macros GetDOBegin
GetpDOBegin GetDOENd, GetpDOENd can be used to determine the beginning and ending
indices of a DATA_OBJECT or DATA_OBJECT_PTR containing a multifield value. Since
multifield values are often extracted from arrays of other data structures (such as facts), these
indices are used to indicate the beginning and ending positions within the array. Thus it is very
important when traversing a multifield value to use indices that run from the begin index to the
end index and not from one to the length of the multifield value. The begin index points to the

24 Section 3 - Integrating CLIPS with External Functions

JSC-25012

first element in the multifield value and the end index points to the last element in the multifield
value. A multifield value of length one will have the same values for the begin and end indices.
A multifield value of length zero will have an end index that is one less than the begin index.

The macros GetMFType and GetMFValue can be used to examine the types and values of
fields within a multifield value. The first argument to these macros should be the value retrieved
from aDATA_OBJECT or DATA_OBJECT_PTR using the GetValue and GetpValue macros.
The second argument is the index of the field within the multifield value. Once again, this
argument should fall in the range between the begin index and the end index for the
DATA_OBJECT from which the multifield value is stored. Macros ValueToString,
ValueToDouble ValueToLong, andValueTolnteger can be used to convert the retrieved value
from GetMFValue to a C object of type char *, double, and long respectively. Do not store the
pointer returned by ValueToString as part of a permanent data structure. When CLIPS performs
garbage collection on symbols and strings, the pointer reference to the string may be rendered
invalid. To store a permanent reference to a string, allocate storage for a copy of the string and
then copy the string returned WlueToString to the copy’s storage area.

The multifield macros should only be used on DATA_OBJECTSs that have type MULTIFIELD
(e.g. the macro GetDOLength returns erroneous values if the type is not MULTIFIELD).

Examples
The following function returns the length of a multifield value. It returns -1 if an error occurs.

#include "clips.h"

/*

Use DefineFunction2("mfl",'I',PTIF MFLength,"MFLength","11m");
*/

long int MFLength()

DATA_OBJECT argument;

I* */
[* Check for exactly one argument. */
I* */

if (ArgCountCheck("mfl",EXACTLY,1) == -1) return(-1L);

I* */
[* Check that the 1st argument is a multifield value. */
I* */

if (ArgTypeCheck("mfl",1,MULTIFIELD,&argument) == 0)
{ return(-1L); }

I* */
[* Return the length of the multifield value. */
I* */

CLIPS Advanced Programming Guide 25

CLIPS Reference Manual

return ((long) GetDOLength(argument));

The following function counts the number of characters in the symbols and strings contained
within a multifield value.

#include "clips.h"

/*

Use DefineFunction2("cmfc”,'I',PTIF CntMFChars,"CntMFChars",
Illlmll);

*/

long int CntMFChars()

DATA_OBJECT argument;
VOID *multifieldPtr;

int end, i;

long count = 0;

char *tempPtr;

I* */
I* Check for exactly one argument. */
I* */

if (ArgCountCheck("cmfc",EXACTLY,1) == -1) return(OL);

I* */
[* Check that the first argument is a multifield value. */
I* */

if (ArgTypeCheck("cmfc",1,MULTIFIELD,&argument) == 0)
{ return(OL); }

/* */
/* Count the characters in each field. */
[* */

end = GetDOEnNd(argument);
multifieldPtr = GetValue(argument);
for (i = GetDOBegin(argument); i <= end; i++)

if (GetMFType(multifieldPtr,i) == STRING) ||
(GetMFType(multifieldPtr,i) == SYMBOL))
{

tempPtr = ValueToString(GetMFValue(multifieldPtr,i));
count += strlen(tempPtr);

}
}

/* */
[* Return the character count. */

26 Section 3 - Integrating CLIPS with External Functions

JSC-25012

I* */

return(count);

3.3 RETURNING VALUES TO CLIPS FROM EXTERNAL FUNCTIONS

Functions which return doubles, floats, integers, long integers, characters, external addresses, and
instance addresses can directly return these values to CLIPS. Other data types including the

unknown (or unspecified) data type and multifield data type, must use functions provided by

CLIPS to construct return values.

3.3.1 Returning Symbols, Strings, and Instance Names

CLIPS uses symbol tables to store all symbols, strings, and instance names. Symbol tables
increase both performance and memory efficiency during execution. If a user-defined function
returns a symbol, string, or an instance name (type's, 'w', or '0' in DefineFunction), the symbol
must be stored in the CLIPS symbol table prior to use. Other types of returns (such as unknown
and multifield values) may also contain symbols which must be added to the symbol table. These
symbols can be added by calling the func#aldSymbol and using the returned pointer value.

#include "clips.h" [* or "symbol.h" */

VOID *AddSymbol(string);
char *string;

Example
This function reverses the character ordering in a string and returns the reversed string. The null

string is returned if an error occurs.

#include <stdlib.h> /* ANSI C library header file */

#include <stddef.h> [* ANSI C library header file */

#include "clips.h"

/*

Use DefineFunction2('reverse-str",'s',PTIF Reverse,"Reverse”,
"11s");

*/

VOID *Reverse()

DATA_OBJECT temp;
char *lexeme, *tempString;
VOID *returnValue;

int i, length;

I* */
* Check for exactly one argument. */

CLIPS Advanced Programming Guide 27

CLIPS Reference Manual

I* */

if (ArgCountCheck("reverse-str',EXACTLY,1) ==-1)
{ return(AddSymbol("™)); }

I* */
* Get the first argument using the ArgTypeCheck function. */
I* */

if (ArgTypeCheck("reverse-str",1,STRING,&temp) == 0)
{ return(AddSymbol("")); }
lexeme = DOToString(temp);

I* */
* Allocate temporary space to store the reversed string. */
* */

length = strlen(lexeme);
tempString = (char *) malloc(length + 1);

* */
[* Reverse the string. */
* */

for (i = 0; i < length; i++)
{ tempString[length - (i + 1)] = lexeme]i]; }
tempString[length] = \0';

I* */
[* Return the reversed string. */
I* */

returnValue = AddSymbol(tempString);
free(tempString);
return(returnValue);

}

3.3.2 Returning Boolean Values

A user function may return a boolean value in one of two ways. The user may define an integer
function and use DefineFunction to declare it as a BOOLEAN type ('b). The function should
then either return the value CLIPS_TRUE or CLIPS_FALSE. Alternatively, the function may
be declare to return a SYMBOL type (‘w') or UNKNOWN type ('u’) and return the symbol
CLIPSFalseSymbolor CLIPSTrueSymbol.

#include "clips.h" [* or "symbol.h" */

#define CLIPS_FALSE O
#define CLIPS_TRUE 1

VOID *CLIPSFalseSymbol

28 Section 3 - Integrating CLIPS with External Functions

JSC-25012

VOID *CLIPSTrueSymbol

Examples
This function returns true if its first argument is a number greater than zero. It uses a boolean

return value.

#include "clips.h"
/*
Use DefineFunction2("positivepl"”,'b’',positivepl,"positivepl”,
; 11n");
int positivepl()
DATA_OBJECT temp;

* */
* Check for exactly one argument. */
* */

if (ArgCountCheck("positivepl",EXACTLY,1) == -1)
{ return(CLIPS_FALSE); }

* */
* Get the first argument using the ArgTypeCheck function. */
* */

if (ArgTypeCheck("positivepl”,1,INTEGER_OR_FLOAT,&temp) == 0)
{ return(CLIPS_FALSE); }

I* */
[* Determine if the value is positive. */
I* */

if (GetType(temp) == INTEGER)

{if (DOToLong(temp) <= 0OL) return(CLIPS_FALSE); }
else /* the type must be FLOAT */

{if (DOToDouble(temp) <= 0.0) return(CLIPS_FALSE); }

return(CLIPS_TRUE);
}

This function aso returns true if its first argument is a number greater than zero. It uses a
symbolic return value.

CLIPS Advanced Programming Guide 29

CLIPS Reference Manual

#include "clips.h"

/*

Use DefineFunction("positivep2",'w',PTIF positivep2,"positivep2",
Illlnll);

*/

VOID *positivep2()
DATA_OBJECT temp;

I* */
* Check for exactly one argument. */
I* */

if (ArgCountCheck("positivepl",EXACTLY,1) == -1)
{ return(CLIPSFalseSymbol); }

I* */
[* Get the first argument using the ArgTypeCheck function. */
I* */

if (ArgTypeCheck("positivepl”,1,INTEGER_OR_FLOAT,&temp) == 0)
{ return(CLIPSFalseSymbol); }

I* */
[* Determine if the value is positive. */
I* */

if (GetType(temp) == INTEGER)

{if (DOToLong(temp) <= OL) return(CLIPSFalseSymbol); }
else /* the type must be FLOAT */

{if (DOToDouble(temp) <= 0.0) return(CLIPSFalseSymbol); }

return(CLIPSTrueSymbol);
}

3.3.3 Returning External Addresses and Instance Addresses

A user function may return an external address or an instance address. The user should use
DefineFunction to declare their function as returning an external address type (‘a) or an instance
address type ('x'). The function should then either return a pointer that has been typecast to
(VOID *). Within CLIPS, the printed representation of an external address is

<Pointer-XXXXXXXX>
where XXXXXXXX is the external address. Note that it is up to the user to make sure that

external addresses remain valid within CLIPS. The printed representation of an instance address
is

30 Section 3 - Integrating CLIPS with External Functions

JSC-25012

<|nstance-XXX>
where XXX is the name of the instance.

Example
This function uses the memory allocation function malloc to dynamically allocated 100 bytes of
memory and then returns a pointer to the memory to CLIPS.

#include <stdlib.h>
#include "clips.h"

/*

Use DefineFunction2("malloc”,'a’,PTIF CLIPSmalloc,"CLIPSmalloc”,
IIOOII);

*

VOID *CLIPSmalloc()
{ return((VOID *) malloc(100)); }

3.3.4 Returning Unknown Data Types

A user-defined function also may return values of an unknown type. The user must declare the
function as returning type unknown; i.e., place a'u’ for data type in the call to DefineFunction.

The user function will be passed a pointer to a structure of type DATA_OBJECT
(DATA_OBJECT_PTR) which should be modified to contain the return value. The user should

set both the type and the value of the DATA_OBJECT. Note that the value of a DATA_OBJECT
cannot be directly set to a double or long value (the functions AddLong and AddDouble should

be used in a manner similar to AddSymbol). The actual return value of the user function is
ignored.

#include "clips.h" [* or "evaluatn.h" */

int SetType(argument,type)
int SetpType(&argument,type)

VOID *SetValue(argument,value)
VOID *SetpValue(&argument,value)

VOID *AddLong(longValue);
VOID *AddDouble(doubleValue);

VOID *GetValue(argument);
VOID *GetpValue(&argument);

CLIPS Advanced Programming Guide 31

CLIPS Reference Manual

char *ValueToString(value);
double ValueToDouble(value);
long ValueToLong(value);
int ValueTolnteger(value);

long longValue;
double doubleValue;
VOID *value;

int type;
DATA_OBJECT argument;

Macros SetType and SetpType can be used to set the type of a DATA_OBJECT or
DATA_OBJECT_PTR respectively. The type parameter should be one of the following CLIPS
defined constants (note that these are not strings): SYMBOL, STRING, INTEGER, FLOAT,
EXTERNAL_ADDRESS, INSTANCE_NAME, or INSTANCE_ADDRESS. Macros SetValue
(for DATA_OBJECTSs) and SetpValue(for DATA_OBJECT_PTRs) can be used to set the value
of a DATA_OBJECT. The functions AddSymbol (for symbols, strings and instance names),
AddLong (for integers) and AddDouble (for floats) can be used to produce values that can be
used with these macros (external addresses and instance addresses can be used directly). Macros
GetValue (for DATA_OBJECTS) and GetpValue (for DATA_OBJECT_PTRs) can be used to
retrieve the value of a DATA_OBJECT. Note that the value for an external address or an
instance address can be retrieved directly using one of these macros. For other data types, the
macrosValueToString (for symbols, strings, and instance names), ValueToLong (for integers),
ValueTolnteger (for integers), and ValueToDouble (for floats) can be used to convert the
retrieved value from a DATA_OBJECT to a C object of type char *, double, long, or integer
respectively.

Example
This function "cubes" its argument returning either an integer or float depending upon the type of

the original argument. It returns the symbol FALSE upon an error.

#include "clips.h"

/*
Use DefineFunction2("cube”,'u’,PTIF cube,"cube","11n");
*/

VOID cube(returnValuePtr)
DATA_OBJECT_PTR returnValuePtr;

{

VOID *value;

long longValue;
double doubleValue;

I* */
[* Check for exactly one argument. */
I* */

32 Section 3 - Integrating CLIPS with External Functions

JSC-25012

if (ArgCountCheck("cube",EXACTLY,1) ==-1)

SetpType(returnValuePtr,SYMBOL);
SetpValue(returnValuePtr,CLIPSFalseSymbol);

return;

}
I* */
;: Get the first argument using the ArgTypeCheck function. */ o

if (! ArgTypeCheck("cube",1,INTEGER_OR_FLOAT,returnValuePtr))

SetpType(returnValuePtr,SYMBOL);
SetpValue(returnValuePtr,CLIPSFalseSymbol);
return;

}

I* */
[* Cube the argument. Note that the return value DATA_OBJECT */

[* is used to retrieve the function's argument and return */

* the function's return value. */

* */

if (GetpType(returnValuePtr) == INTEGER)

value = GetpValue(returnValuePtr);
longValue = ValueToLong(value);
value = AddLong(longValue * longValue * longValue);

}
else /* the type must be FLOAT */

value = GetpValue(returnValuePtr);
doubleValue = ValueToDouble(value);
value = AddDouble(doubleValue * doubleValue * doubleValue);

}

I* */
[* Set the value of the return DATA_OBJECT. The return */

[* type does not have to be changed since it will be */

[* the same as the 1st argument to the function. *

I* */

SetpValue(returnValuePtr,value);
return;

}

3.3.5 Returning Multifield Values

Multifield values can also be returned from an external function. When defining such an external
function, the data type should be set to 'm' in the call to DefineFunction. Note that a multifield
value can aso be returned from a'u’ function, whereas only a multifield value should be returned

CLIPS Advanced Programming Guide 33

CLIPS Reference Manual

from an 'm' function. As with returning unknown data types, the user function will be passed a
pointer of type DATA_OBJECT_PTR which can be modified to set up a multifield value. The
following macros and functions are useful for this purpose:

VOID *CreateMultifield(size);

int SetMFType(multifieldPtr,fieldPosition,type);
VOID *SetMFValue(multifieldPtr,fieldPosition,value);
int SetDOBegin(returnValue,fieldPosition);

int SetpDOBegin(&returnValue,fieldPosition);

int SetDOEnNd(returnValue,fieldPosition);

int SetpDOENd(&returnValue,fieldPosition);

VOID SetMultifieldErrorValue(&returnValue);

DATA_ OBJECT returnValue;
int size, fieldPosition;

VOID *multifieldPtr;

VOID *value;

If a new multifield is to be created from an existing multifield, then the type and value of the
existing multifield can be copied and the begin and end indices can be modified to obtain the
appropriate subfields of the multifield value. If you wish to create a new multifield value that is
not part of an existing multifield value, then use the function CreateMultifield . Given an integer
argument, this function will create a multifield value of the specified size with valid indices
ranging from one to the given size (zero is a legitimate parameter to create a multifield value
with no fields). The macros SetMFType and SetMFValue can be used to set the types and
values of the fields of the newly created multifield value. Both macros accept as their first
argument the value returned by CreateMultifield . The second argument should be an integer
representing the position of the multifield value to be set. The third argument is the same as the
arguments used f@etTypeandSetValuemacros.

Do not set the value or type of any field within a multifield value that has been returned to you
by CLIPS. Use these macros only on multifield values created using the CreateMultifield
function.

The macros SetDOBegin SetpDOBegin SetDOENd, SetpDOENd can be used to assign values
to the begin and end indices of a DATA_OBJECT or DATA_OBJECT PTR containing a
multifield value. These macros are useful for creating “new” multifield values by manipulating
the indices of a currently existing multifield value. For example, a function that returns the first
field of a multifield value could do so by setting the end index equal to the begin index (if the
length of the multifield value was greater than zero).

The function SetMultifieldErrorValue can be used to create a multifield value of length zero

(which is useful to return as an error value). Its only parameter isaDATA_OBJECT_PTR which
is appropriately modified to create a zero length multifield value.

34 Section 3 - Integrating CLIPS with External Functions

JSC-25012

Examples
The following example creates a multifield value with two fields, a word and a number:

#include "clips.h"

/*

Use DefineFunction2("sample4”,'m',PTIF sample4,"sample4”,"00");
*/

VOID sample4(returnValuePtr)
DATA_OBJECT_PTR returnValuePtr;

{
VOID *multifieldPtr;

I* */
I* Check for exactly zero arguments. */
I* */

if (ArgCountCheck("sample4”,EXACTLY,0) == -1)

SetMultifieldErrorValue(returnValuePtr);

return;

}
I* */
* Create a multi-field value of length 2 */
* */

multifieldPtr = CreateMultifield(2);

[* */
/* The first field in the multi-field value */

/* will be a SYMBOL. Its value will be */

[* "altitude". */

[* */

SetMFType(multifieldPtr,1,SYMBOL);
SetMFValue(multifieldPtr,1,AddSymbol("altitude™));

[* */
/* The second field in the multi-field value */
/* will be a FLOAT. Its value will be 900. */
[* */

SetMFType(multifieldPtr,2,FLOAT);
SetMFValue(multifieldPtr,2, AddDouble(900.0));

I* */
[* Assign the type and value to the return DATA_OBJECT. */
/*

*/

SetpType(returnValuePtr, MULTIFIELD);
SetpValue(returnValuePtr,multifieldPtr);

CLIPS Advanced Programming Guide 35

CLIPS Reference Manual

I* */
[* The length of our multi-field value will be 2. */

* Since we will create our own multi-field value */

* the begin and end indexes to our function will */

/* be 1 and the length of the multi-field value */

* respectively. If we are examining a multi-field */

[* value, or using an existing multi-field value */

[* to create a new multi-field value, then the */

[* begin and end indexes may not correspondto 1 */

/* and the length of the multi-field value. */

I* */

SetpDOBegin(returnValuePtr,1);
SetpDOENd(returnValuePtr,2);

return;

}
The following example returns all but the first field of a multifield value:
#include "clips.h"
/~k
Use DefineFunction2("rest”,'m',PTIF rest,"rest","11m");
*/

VOID rest(returnValuePtr)
DATA OBJECT_PTR returnValuePtr;

{

I* */
I* Check for exactly one argument. */

I* */

if (ArgCountCheck('rest",EXACTLY,1) ==-1)

SetMultifieldErrorValue(returnValuePtr);

return;

}
/* */
/* Check for a MULTIFIELD. */
/* */

if (ArgTypeCheck('rest",1, MULTIFIELD,returnValuePtr) == 0)

SetMultifieldErrorValue(returnValuePtr);
return;

}

36 Section 3 - Integrating CLIPS with External Functions

JSC-25012

I* */

/* Don't bother with a zero length multifield value. */

I* */

if (GetpDOBegin(returnValuePtr) > GetpDOEnd(returnValuePtr))
{return; }

I* */

/* Increment the begin index by one. */

* */

SetpDOBegin(returnValuePtr,GetpDOBegin(returnValuePtr) + 1);
}

3.4 USER-DEFINED FUNCTION EXAMPLE

This section lists the steps needed to define and implement a user-defined function. The example
given is somewhat trivial, but it demonstrates the point. The user function merely triples a
number and returns the new value.

1) Copy all of the CLIPS source code file to the user directory.

2) Define the user function in a new file.
#include "clips.h"
double TripleNumber()

{
return(3.0 * RtnDouble(1));
}

The preceding function does the job just fine. The following function, however, accomplishes the
same purpose while providing error handling on arguments and allowing either an integer or
double return value.

#include "clips.h"

VOID TripleNumber(returnValuePtr)
DATA _OBJECT_PTR returnValuePtr;

{
VOID *value;

long longValue;
double doubleValue;

CLIPS Advanced Programming Guide 37

CLIPS Reference Manual

I* */
* If illegal arguments are passed, return zero. */
/*

*/
if (ArgCountCheck("triple",EXACTLY,1) ==-1)
SetpType(returnValuePtr,INTEGER);

SetpValue(returnValuePtr,AddLong(OL));
return;

}
if (! ArgTypeCheck("triple”,1,INTEGER_OR_FLOAT ,returnValuePtr))

SetpType(returnValuePtr,INTEGER);
SetpValue(returnValuePtr,AddLong(OL));

return;
}
I* */
[* Triple the number. */
* */

if (GetpType(returnValuePtr) == INTEGER)

value = GetpValue(returnValuePtr);
longValue = 3 * ValueToLong(value);
SetpValue(returnValuePtr,AddLong(longValue));

}
else /* the type must be FLOAT */

value = GetpValue(returnValuePtr);
doubleValue = 3.0 * ValueToDouble(value);
SetpValue(returnValuePtr,AddDouble(doubleValue));

return;

}

3) Define the constructs which use the new function in a new file (or in an existing constructs
file). For example:

(deffacts init-data
(data 34)
(data 13.2))

(defrule get-data
(data ?num)
=>
(printout t "Tripling " ?num crlf)
(assert (new-value (triple ?num))))

38 Section 3 - Integrating CLIPS with External Functions

JSC-25012

(defrule get-new-value
(new-value ?num)
=>
(printout t crlf "Now equal to " ?num crlf))
4) Modify the CLIPSmain.c file to include the new UserFunctions definition.

UserFunctions()
extern VOID TripleNumber();

DefineFunction2("triple”,'u’,PTIF TripleNumber, "TripleNumber",
Illlnll);
}

5) Compile the CLIPS files along with any files which contain user-defined functions.
6) Link all object code files.

7) Execute new CLIPS executable. Load the constructs file and test the new function.

CLIPS Advanced Programming Guide 39

JSC-25012

Section 4 - Embedding CLIPS

CLIPS was designed to be embedded within other programs. When CLIPS is used as an em-
bedded application, the user must provide a main program. Calls to CLIPS are made like any
other subroutine. To embed CLIPS, add the following include statements to the user's main
program file:

#include <stdio.h>
#include "clips.h"

(These statements may have to be tailored so the compiler on the user's system can find the
CLIPS include file.) The user’'s main program must initialize CLIPS by calling the function
InitializeCLIPS at some time prior to loading construdiserFunctionsalso must be defined,
regardless of whether CLIPS calls any external functions. Compile and link all of the user's code
with all CLIPS filesexcepthe object version ahain.c. When running CLIPS as an embedded
program, many of the capabilities available in the interactive interface (in addition to others) are
available through function calls. The functions are documented in the following sections.
Prototypes for these functions can be included by usinditieeh header file.

4.1 ENVIRONMENT FUNCTIONS

The following function calls control the CLIPS environment:

4.1.1 AddClearFunction

int AddClearFunction(clearltemName,clearFunction,priority);
char *clearltemName;

VOID (*clearFunction)();

int priority;

VOID clearFunction();

Purpose: Adds a user defined function to the list of functions which are called
when the CLIP&lear command is executed.

Arguments: 1) The name of the new clear item.

2) A pointer to the function which is to be called whenever aclear
command is executed.

3) The priority of the clear item which determines the order in
which clear items are called (higher priority items are called
first). The values -2000 to 2000 are reserved for CLIPS system
defined clear items and should not be used for user defined clear
items.

CLIPS Advanced Programming Guide 41

CLIPS Reference Manual

Returns: Returns a zero value if the clear item could not be added, otherwise
a non-zero value is returned.

4.1.2 AddPeriodicFunction

int AddPeriodicFunction(periodicltemName,periodicFunction,
priority);

char *periodicltemName;

VOID (*periodicFunction)();

int priority;

VOID periodicFunction();

Purpose: Adds a user defined function to the list of functions which are called
periodically while CLIPS is executing. This ability was primarily
included to allow interfaces to process events and update displays
during CLIPS execution. Care should be taken not to use any
operations in a periodic function which would affect CLIPS data
structures constructively or destructively, i.e. CLIPS internals may
be examined but not modified during a periodic function.

Arguments: 1) The name of the new periodic item.

2) A pointer to a function which is to be called periodically while
CLIPS is executing.

3) The priority of the periodic item which determines the order in
which periodic items are called (higher priority items are called
first). The values -2000 to 2000 are reserved for CLIPS system
defined periodic items and should not be used for user defined
periodic items.

Returns: Returns a zero value if the periodic item could not be added,
otherwise a non-zero value is returned.

4.1.3 AddResetFunction

int AddResetFunction(resetltemName,resetFunction,priority);
char *resetltemName;

VOID (*resetFunction)();

int priority;

VOID resetFunction();

Purpose: Adds a user defined function to the list of functions which are called
when the CLIPSeset command is executed.

42 Section 4 - Embedding CLIPS

Arguments:

Returns:

4.1.4 Bload

int Bload(fileName);
char *fileName;

Purpose:

Arguments:

Returns:

4.1.5 Bsave

int Bsave(fileName);
char *fileName;

Purpose:

Arguments:

Returns:

4.1.6 Clear
VOID Clear();

JSC-25012

1) The name of the new reset item.

2) A pointer to the function which is to be called whenever areset
command is executed.

3) The priority of the reset item which determines the order in
which reset items are called (higher priority items are called
first). The values -2000 to 2000 are reserved for CLIPS system
defined reset items and should not be used for user defined reset
items.

Returns a zero value if the reset item could not be added, otherwise
a non-zero value is returned.

Loads a binary image of constructs into the CLIPS data base (the C
equivalent of the CLIP8load command).

A string representing the name of the file.

Returns an integer; if zero, an error occurred. A positive one is
returned upon success.

Saves a binary image of constructs from the CLIPS data base (the C
equivalent of the CLIP8savecommand).

A string representing the name of the file.

Returns an integer; if zero, an error occurred. A positive one is
returned upon success.

CLIPS Advanced Programming Guide 43

CLIPS Reference Manual

Purpose:

Arguments:

Returns:

4.1.7 CLIPSFunctionCall

Clears the CLIPS environment (the C equivalent of the CLIPS clear
command).

None.

No meaningful return value.

VOID CLIPSFunctionCall(functionName,arguments,&result);
char *functionName,*arguments;
DATA_OBJECT result;

Purpose:

Arguments:

Returns:

Example

DATA_OBJECT rtn;

Allows CLIPS system functions, deffunctions and generic functions
to be called from C.

1) The name of the system function, deffunction or generic
function to be called.

2) A string containing any constantarguments separated by blanks
(this argument can be NULL).

3) Cdler's buffer for storing the result of the function call. See
sections 3.2.3 and 3.2.4 for information on getting the value
stored in a DATA_OBJECT.

No meaningful return value.

CLIPSFunctionCall("+","1 2",&rtn);

4.1.8 GetAutoFloatDividend

int GetAutoFloatDividend();

Purpose:

Arguments:

Returns:

44

Returns the current value of the auto-float dividend behavior (the C
equivalent of the CLIP§et-auto-float-dividend command).

None.

An integer; CLIPS FALSE (0) if the behavior is disabled and
CLIPS_TRUE (1) if the behavior is enabled.

Section 4 - Embedding CLIPS

JSC-25012

4.1.9 GetDynamicConstraintChecking

int GetDynamicConstraintChecking();

Purpose:

Arguments:

Returns:

Returns the current value of the dynamic constraint checking
behavior (the C equivalent of the CLIPS
get-dynamic-constraint-checkingcommand).

None.

An integer; CLIPS FALSE (0) if the behavior is disabled and
CLIPS_TRUE (1) if the behavior is enabled.

4.1.10 GetSequenceOperatorRecognition

int GetSequenceOperatorRecognition();

Purpose:

Arguments:

Returns:

Returns the current value of the sequence operator recognition
behavior (the C equivalent of the CLIPS get-sequence-operator-
recognition command).

None.

An integer; CLIPS FALSE (0) if the behavior is disabled and
CLIPS_TRUE (1) if the behavior is enabled.

4.1.11 GetStaticConstraintChecking

int GetStaticConstraintChecking();

Purpose:

Arguments:

Returns:

4.1.12 InitializeCLIPS

Returns the current value of the static constraint checking behavior
(the C equivalent of the CLIPS get-static-constraint-checking
command).

None.

An integer; CLIPS FALSE (0) if the behavior is disabled and
CLIPS_TRUE (1) if the behavior is enabled.

VOID Initialize CLIPS();

CLIPS Advanced Programming Guide 45

CLIPS Reference Manual

Purpose: Initializes the CLIPS system. Must be called prior to any other
CLIPS function call. NOTE: This function should be called only
once.

Arguments: None.

Returns: No meaningful return value.

4.1.13 Load

int Load(fileName);
char *fileName;

Purpose: Loads a set of constructs into the CLIPS data base (the C equivalent
of the CLIPSoad command).

Arguments: A string representing the name of the file.

Returns: Returns an integer; Zero if the file couldn’t be opened, -1 if the file
was opened but an error occurred while loading, and 1 if the file
was opened an no errors occurred while loading. If syntactic errors
are in the constructs, Load still will attempt to read the entire file
and error notices will be sentweerror.

Other: The load function is not available for use in run-time programs
(since individual constructs can’t be added or deleted). To execute
different sets of constructs, the switching feature must be used in a
run-time program (see section 5 for more details).

4.1.14 RemoveClearFunction

int RemoveClearFunction(clearltemName);
char *clearltemName;

Purpose: Removes a named function from the list of functions to be called
during aclear command.

Arguments: The name associated with the user-defined clear function. This is
the same name that was used when the clear function was added
with the functionAddClearFunction.

Returns: Returns the integer value 1 if the named function was found and
removed, otherwise 0 is returned.

46 Section 4 - Embedding CLIPS

JSC-25012

4.1.15 RemovePeriodicFunction

int RemovePeriodicFunction(periodicltemName);
char *periodicltemName;

Purpose: Removes a named function from the list of functions which are
called periodically while CLIPS is executing.

Arguments: The name associated with the user-defined periodic function. This is
the same name that was used when the periodic function was added
with the functionAddPeriodicFunction.

Returns: Returns the integer value 1 if the named function was found and
removed, otherwise O is returned.

4.1.16 RemoveResetFunction

int RemoveResetFunction(resetitemName);
char *resetltemName;

Purpose: Removes a named function from the list of functions to be called
during aresetcommand.

Arguments: The name associated with the user-defined reset function. This is
the same name that was used when the reset function was added
with the functionAddResetFunction

Returns: Returns the integer value 1 if the named function was found and
removed, otherwise O is returned.

4.1.17 Reset
VOID Reset();
Purpose: Resets the CLIPS environment (the C equivalent of the CLIPS reset
command).
Arguments: None.
Returns: No meaningful return value.

CLIPS Advanced Programming Guide a7

CLIPS Reference Manual

4.1.18 Save

int Save(fileName);
char *fileName;

Purpose:

Arguments:

Returns:

Saves a set of constructs to the specified file (the C equivalent of the
CLIPSsavecommand).

A string representing the name of the file.

Returns an integer; if zero, an error occurred while opening the file.
If non-zero no errors were detected while performing the save.

4.1.19 SetAutoFloatDividend

int SetAutoFloatDividend(value);

int value;

Purpose:

Arguments:

Returns:

Sets the auto-float dividend behavior (the C equivalent of the CLIPS
set-auto-float-dividend command). When this behavior is enabled

(by default) the dividend of the division function is automatically
converted to a floating point number.

The new value for the behavior: CLIPS TRUE (1) to enable the
behavior and CLIPS_FALSE (0) to disable it.

Returns the old value for the behavior.

4.1.20 SetDynamicConstraintChecking

int SetDynamicConstraintChecking(value);

int value;

Purpose:

Arguments:

48

Sets the value of the dynamic constraint checking behavior (the C
equivalent of the CLIPS command set-dynamic-constraint-
checking). When this behavior is disabled (FALSE by default),
newly created data objects (such as deftemplate facts and instances)
do not have their slot values checked for constraint violations.
When this behavior is enabled (TRUE), the slot values are checked
for constraint violations. The return value for this function is the old
value for the behavior.

The new value for the behavior: CLIPS TRUE (1) to enable the

behavior and CLIPS_FALSE (0) to disable it.

Section 4 - Embedding CLIPS

JSC-25012

Returns: Returns the old value for the behavior.

4.1.21 SetSequenceOperator Recognition

int SetSequenceOperatorRecognition(value);
int value;

Purpose: Sets the sequence operator recognition behavior (the C equivalent of
the CLIPS set-sequence-operator-recognitiocommand). When
this behavior is disabled (by default) multifield variables found in
function calls are treated as a single argument. When this behaviour
is enabled, multifield variables are expanded and passed as separate
arguments in the function call.

Arguments: The new value for the behavior: CLIPS TRUE (1) to enable the
behavior and CLIPS_FALSE (0) to disable it.

Returns: Returns the old value for the behavior.

4.1.22 SetStaticConstraintChecking

int SetStaticConstraintChecking(value);
int value;

Purpose: Sets the value of the static constraint checking behavior (the C
equivaent of the CLIPS command set-static-constraint-checking.
When this behavior is disabled (FALSE), constraint violations are
not checked when function calls and constructs are parsed. When
this behavior is enabled (TRUE by default), constraint violations are
checked when function calls and constructs are parsed. The return
value for this function is the old value for the behavior.

Arguments: The new value for the behavior: CLIPS TRUE (1) to enable the
behavior and CLIPS_FALSE (0) to disable it.

Returns: Returns the old value for the behavior.

4.2 DEBUGGING FUNCTIONS

The following function call controls the CLIPS debugging aids:

CLIPS Advanced Programming Guide 49

CLIPS Reference Manual

4.2.1 DribbleActive

int DribbleActive();
Purpose: Determines if the storing of dribble information is active.
Arguments: None.
Returns: Zero if dribbling is not active, non-zero otherwise.

4.2.2 DribbleOff

int DribbleOff();
Purpose: Turns off the storing of dribble information (the C equivalent of the
CLIPSdribble-off command).
Arguments: None.
Returns: A zero if an error occurred closing the file; otherwise a one.

4.2.3 DribbleOn

int DribbleOn(fileName);
char *fileName;

Purpose: Allows the dribble function of CLIPS to be turned on (the C
equivalent of the CLIPS8ribble-on command).

Arguments: The name of the file in which to store dribble information. Only one
dribble file may be opened at a time.

Returns: A zero if an error occurred opening the file; otherwise a one.

4.2.4 GetWatchltem

int GetWatchltem(item);

char *item;
Purpose: Returns the current value of a watch item.
Arguments: The item to be activated or deactivated which should be one of the

following strings: facts rules activations focus compilations

50 Section 4 - Embedding CLIPS

Returns:

4.2.5 Unwatch

int Unwatch(item);
char *item;

Purpose:

Arguments:

Returns:
4.2.6 Watch

int Watch(item);
char *item;

Purpose:

Arguments:

Returns:

JSC-25012

statistics globals instances slots messages, message-handlers
generic-functionsmethod or deffunctions

Returns 1 if the watch item is enabled, O if the watch item is
disabled, and -1 if the watch item does not exist.

Allows the tracing facilities of CLIPS to be deactivated (the C
equivalent of the CLIP8nwatch command).

The item to be deactivated which should be one of the following
strings: facts, rules, activations, focus, compilations, statistics,
globals, deffunctions, instances, slots, messages, message-handlers,
generic-functions, methods, or al. If all is selected, al possible
watch items will not be traced.

A one if the watch item was successfully set; otherwise a zero.

Allows the tracing facilities of CLIPS to be activated (the C
equivalent of the CLIP®atch command).

The item to be activated which should be one of the following
strings: facts, rules, activations, focus, compilations, statistics,
globals, deffunctions, instances, slots, messages, message-handlers,
generic-functions, methods, or al. If al is selected, al possible
watch items will be traced.

A one if the watch item was successfully set; otherwise a zero.

4.3 DEFTEMPLATE FUNCTIONS

The following function calls are used for manipulating deftemplates.

CLIPS Advanced Programming Guide 51

CLIPS Reference Manual

4.3.1 DeftemplateModule

char *DeftemplateModule(deftemplatePtr);
VOID *deftemplatePtr;

Purpose: Returns the module in which a deftemplate is defined (the C
equivalent of the CLIP8eftemplate-modulecommand).

Arguments: A generic pointer to a deftemplate.

Returns: A string containing the name of the module in which the
deftemplate is defined.

4.3.2 FindDeftemplate

VOID *FindDeftemplate(deftemplateName);
char *deftemplateName;

Purpose: Returns a generic pointer to a named deftemplate.

Arguments: The name of the deftemplate to be found.

Returns: A generic pointer to the named deftemplate if it exists, otherwise
NULL.

4.3.3 GetDeftemplateList

VOID GetDeftemplateList(&returnValue,theModule);
DATA_OBJECT returnValue;
VOID *theModule;

Purpose: Returns the list of deftemplates in the specified module as a
multifield value in the returnValue DATA_OBJECT (the C
equivalent of the CLIPSjet-deftemplate-listfunction).

Arguments: 1) A pointer to the caller’s DATA_OBJECT in which the return
value will be stored. The multifield functions described in
section 3.2.4 can be used to retrieve the deftemplate names from
the list.

2) A generic pointer to the module from which the list will be
extracted. A NULL pointer indicates that the list is to be
extracted from al | modules.

Returns: No meaningful return value.

52 Section 4 - Embedding CLIPS

JSC-25012

4.3.4 GetDeftemplateName

char *GetDeftemplateName(deftemplatePtr);
VOID *deftemplatePtr;

Purpose: Returns the name of a deftemplate.
Arguments: A generic pointer to a deftemplate data structure.
Returns: A string containing the name of the deftemplate.

4.3.5 GetDeftemplatePPForm

char *GetDeftemplatePPForm(deftemplatePtr);
VOID *deftemplatePtr;

Purpose: Returns the pretty print representation of a deftemplate.
Arguments: A generic pointer to a deftemplate data structure.
Returns: A string containing the pretty print representation of the deftemplate

(or the NULL pointer if no pretty print representation exists).

4.3.6 GetDeftemplateWatch

int GetDeftemplateWatch(deftemplatePtr);
VOID *deftemplatePtr;

Purpose: Indicates whether or not a particular deftemplate is being watched.

Arguments: A generic pointer to a deftemplate data structure.

Returns: An integer; one (1) if the deftemplate is being watched, otherwise a
zero (0).

4.3.7 GetNextDeftemplate

VOID *GetNextDeftemplate(deftemplatePtr);
VOID *deftemplatePtr;

Purpose: Provides access to the list of deftemplates.

Arguments: A generic pointer to a deftemplate data structure (or NULL to get
the first deftemplate).

CLIPS Advanced Programming Guide 53

CLIPS Reference Manual

Returns: A generic pointer to the first deftemplate in the list of deftemplates
if deftemplatePtis NULL, otherwise a generic pointer to the
deftemplate immediately following deftemplatePtin the list of
deftemplates. If deftemplatePtris the last deftemplate in the list of
deftemplates, then NULL is returned.

4.3.8 IsDeftemplateDeletable

int IsDeftemplateDeletable(deftemplatePtr);
VOID *deftemplatePtr;

Purpose: Indicates whether or not a particular deftemplate can be deleted.

Arguments: A generic pointer to a deftemplate data structure.

Returns: An integer; zero (0) if the deftemplate cannot be deleted, otherwise
aone (1).

4.3.9 ListDeftemplates
VOID ListDeftemplates(logicalName,theModule);
char *logicalName;
VOID *theModule;

Purpose: Prints the list of deftemplates (the C equivalent of the CLIPS
list-deftemplatescommand).

Arguments: 1) The logical name to which the listing output is sent.
2) A generic pointer to the module containing the deftemplates to
be listed. A NULL pointer indicates that deftemplate in all
modules should be listed.

Returns: No meaningful return value.

4.3.10 SetDeftemplateWatch
VOID SetDeftemplateWatch(newState,deftemplatePtr);
int newState;
VOID *deftemplatePtr;

Purpose: Sets the facts watch item for a specific deftemplate.

54 Section 4 - Embedding CLIPS

JSC-25012

Arguments: The new facts watch state and a generic pointer to a deftemplate
data structure.

4.3.11 Undeftemplate

int Undeftemplate(deftemplatePtr);
VOID *deftemplatePtr;

Purpose: Removes a deftemplate from CLIPS (the C equivaent of the CLIPS
undeftemplate command).

Arguments: A generic pointer to a deftemplate data structure. If the NULL
pointer is used, then all deftemplates will be deleted.

Returns: An integer; zero (0) if the deftemplate could not be deleted,
otherwise a one (1).

4.4 FACT FUNCTIONS

The following function calls manipulate and display information about facts.

4.4.1 Assert

VOID *Assert(factPtr);
VOID *factPtr;

Purpose: Adds afact created using the function CreateFactto the fact-list. If
the fact was asserted successfully, Assertwill return a pointer to the
fact. Otherwise, it will return NULL (i.e., the fact was already in the
fact-list).

Arguments: A generic pointer to the fact created using CreateFact The values
of the fact should be initialized before calliAgsert

Returns: A generic pointer to a fact structure. If the fact was asserted
successfully,Assert will return a generic pointer to the fact.
Otherwise, it will return NULL (i.e., the fact was already in the
fact-list).

WARNING: If the return value from Assertis stored as part of a persistent data
structure or in a datic data area, then the function
IncrementFactCount should be called to insure that the fact cannot
be disposed while external references to the fact still exist.

CLIPS Advanced Programming Guide 55

CLIPS Reference Manual

4.4.2 AssertString

VOID *AssertString(string);
char *string;

Purpose: Asserts a fact into the CLIPS fact-list (the C equivalent of the
CLIPSassert-stringcommand).

Arguments: One argument; a pointer to a string containing a list of primitive
data types (symbols, strings, integers, floats, and/or instance
names).

Returns: A generic pointer to a fact structure.

Examples

If the following deftemplate has been processed by CLIPS,

(deftemplate example
(multislot v)
(slot w (default 9))
(slot x)

(sloty)
(multislot z))

then the following fact
(example (x 3) (y red) (z 1.5 b))
can be added to the fact-list using the function shown below.

VOID AddExampleFactl()
{
AssertString("(example (x 3) (y red) (z 1.5 b))");
}

To construct a string based on variable data, use the C library fusptiatf as shown
following.

VOID VariableFactAssert(number,status)
int number;
char *status;
{
char tempBuffer[50];

sprintf(tempBuffer,"(example (x %d) (y %s))",number,status);
AssertString(tempBuffer);

56 Section 4 - Embedding CLIPS

JSC-25012

4.4.3 AssignFactSlotDefaults

int AssignFactSlotDefaults(theFact);

VOID *theFact;

Purpose:
Arguments:

Returns:

4.4.4 CreateFact

Assigns default values to a fact.
A generic pointer to a fact data structure.

Boolean value. TRUE if the default values were successfully set,
otherwise FALSE.

VOID *CreateFact(deftemplatePtr);

VOID *deftemplatePtr;

Purpose:

Arguments:

Returns:

Other:

Function CreateFact returns a pointer to a fact structure with
factSize fields. Once this fact structure is obtained, the fields of the
fact can be given values by using PutFactSlot and
AssignFactSlotDefaults Function AddFact should be called when
the fact is ready to be asserted.

A generic pointer to a deftemplate data structure (which indicates
the type of fact being created).

A generic pointer to a fact data structure.

Use the CreateFact function to create a new fact and then the
PutFactSlot function to set one or more dot values. The
AssignFactSlotDefaultsfunction is then used to assign default
values for dots not set with the PutFactSlot function. Finaly, the
Assert function is called with the new fact.

Since CreateFactrequires a generic deftemplate pointer, it is not
possible to use it to create ordered facts unless the associated
implied deftemplate has already been created. In cases where the
implied deftemplate has not been created, the function AssertString
can be used to create ordered facts.

This function allows individual fields of afact to be assigned under
programmer control. This is useful, for example, if a fact asserted
from an external function needs to contain an external address or an
instance address (since the function AssertString does not permit

CLIPS Advanced Programming Guide 57

CLIPS Reference Manual

these data types). For most situations in which a fact needs to be
asserted, however, the AssertString function should be preferred (it
is dighter slower than using the CreateFact and Assert functions,
but it is much easier to use and less prone to being used incorrectly).

Examples
If the following deftemplate has been processed by CLIPS,

(deftemplate example
(multislot v)
(slot w (default 9))
(slot x)

(sloty)
(multislot z))

then the following fact
(example (x 3) (y red) (z 1.5 b))

can be added to the fact-list using the function shown below.
VOID AddExampleFact2()

{

VOID *newFact;

VOID *templatePtr;

VOID *theMultifield;
DATA_OBJECT theValue;

/* */
/* Create the fact. */
/* */

templatePtr = FindDeftemplate("example™);
newFact = CreateFact(templatePtr);
if (newFact == NULL) return;

/* */
/* Set the value of the x slot. */
/* */

theValue.type = INTEGER;
theValue.value = AddLong(3);
PutFactSlot(newFact,"x",&theValue);

I* */
[* Set the value of the y slot. */
I* */

theValue.type = SYMBOL,;
theValue.value = AddSymbol(“red");
PutFactSlot(newFact,"y",&theValue);

58 Section 4 - Embedding CLIPS

JSC-25012

[* */
/* Set the value of the z slot. */
[* */

theMultifield = CreateMultifield(2);
SetMFType(theMultifield,1,FLOAT);
SetMFValue(theMultifield,1,AddDouble(1.5));
SetMFType(theMultifield,2,SYMBOL);
SetMFValue(theMultifield,2,AddSymbol("b"));
SetDOBegin(theValue,1);
SetDOENd(theValue,?2);

theValue.type = MULTIFIELD;
theValue.value = theMultifield;
PutFactSlot(newFact,"z",&theValue);

* */
* Assign default values since all */

/* slots were not initialized. */
[* */

AssignFactSlotDefaults(hnewFact);

I* */
[* Assert the fact. */

I* */
Assert(newFact);

4.4.5 DecrementFactCount

VOID DecrementFactCount(factPtr);
VOID *factPtr;

Purpose: This function should only be called to reverse the effects of a
previous call to IncrementFactCount. Aslong as an fact's count is
greater than zero, the memory allocated to it cannot be released for

other use.
Arguments: A generic pointer to a fact.
Returns: No meaningful return value.

CLIPS Advanced Programming Guide 59

CLIPS Reference Manual

4 .4.6 Factindex

long int Factindex(factPtr);
VOID *factPtr;

Purpose: Returns the fact index of afact (the C equivaent of the CLIPS fact-
index command).

Arguments: A generic pointer to a fact data structure.
Returns: A long integer (the fact-index of the fact).
4.4.7 Facts

VOID Facts(logicalName,theModule,start,end,max);
char *logicalName;
VOID *theModule;
long start, end, max;

Purpose: Prints the list of al facts currently in the fact-list (the C equivalent
of the CLIPS facts command). Output is sent to the logical name
wdisplay.

Arguments: 1) The logical name to which the listing output is sent.

2) A generic pointer to the module containing the facts to be listed
(al facts visible to that module). A NULL pointer indicates that
all facts in all modules should be listed.
3) The start index of the facts to be listed. Facts with indices less
than this value are not listed. A value of -1 indicates that the
argument is unspecified and should not restrict the facts printed.
4) Theend index of the factsto be listed. Facts with indices greater
than this value are not listed. A value of -1 indicates that the
argument is unspecified and should not restrict the facts printed.
5) The maximum number of facts to be listed. Facts in excess of
thislimit are not listed. A value of -1 indicates that the argument
is unspecified and should not restrict the facts printed.

Returns: No meaningful return value.

4.4.8 GetFactDuplication

int GetFactDuplication();

60 Section 4 - Embedding CLIPS

JSC-25012

Purpose: Returns the current value of the fact duplication behavior (the C
equivalent of the CLIP§et-fact-duplication command).

Arguments: None.

Returns: An integer; CLIPS FALSE (0) if the behavior is disabled and
CLIPS_TRUE (1) if the behavior is enabled.

4.4.9 GetFactListChanged
int GetFactListChanged();

Purpose: Determines if any changes to the fact list have occurred. If this
function returns a non-zero integer, it is the user's responsibility to
call SetFactListChanged(0) to reset the internal flag. Otherwise, this
function will continue to return non-zero even when no changes
have occurred. This function is primarily used to determine when to
update a display tracking the fact list.

Arguments: None.

Returns: 0 if no changes to the fact list have occurred, non-zero otherwise.

4.4.10 GetFactPPForm

VOID GetFactPPForm(buffer,bufferLength,factPtr);
char *buffer,;

int bufferLength;

VOID *factPtr;

Purpose: Returns the pretty print representation of a fact in the caller's buffer.

Arguments: 1) A pointer to the caller's character buffer.

2) The maximum number of characters which could be stored in
the caller's buffer (not including space for the terminating null
character).

3) A generic pointer to a fact data structure.

Returns: No meaningful return value. The fact pretty print form is stored in
the caller's buffer.

CLIPS Advanced Programming Guide 61

CLIPS Reference Manual

4.4.11 GetFactSlot

int GetFactSlot(factPtr,slotName,&theValue);

VOID *factPtr;
char *slotName;

DATA_OBJECT theValue;

Purpose:

Arguments:

Returns:

4.4.12 GetNextFact

Retrieves a slot value from a fact.

1) A generic pointer to a fact data structure.

2) The name of the dlot to be retrieved (NULL should be used for
the implied multifield slot of an implied deftemplate).

3) A pointer to a DATA_OBJECT in which to place the dot’s

value. See sections 3.2.3 and 3.2.4 for information on getting the

value stored in a DATA_OBJECT.

Boolean value. TRUE if the slot value was successfully retrieved,
otherwise FALSE.

VOID *GetNextFact(factPtr);

VOID *factPtr;

Purpose:

Arguments:

Returns:

Other:

WARNING:

62

Provides access to the fact-list.

A generic pointer to a fact data structure (or NULL to get the first
fact in the fact-list).

A generic pointer to the first fact in the fact-list if factPtris NULL,
otherwise a generic pointer to the fact immediately following
factPtrin the fact-list. If factPtris the last fact in the fact-list, then
NULL is returned.

Once this generic pointer to the fact structure is obtained, the fields
of the fact can be examined by using the macros GetMFType and
GetMFValue. The values of a fact obtained using this function
should never be changed. See CreateFactfor details on accessing
deftemplate facts.

Do not call this function with a pointer to a fact that has been

retracted. If the return value from GetNextFactis stored as part of a
persistent data structure or in a static data area, then the function

Section 4 - Embedding CLIPS

JSC-25012

IncrementFactCount should be called to insure that the fact cannot
be disposed while external references to the fact still exist.

4.4.13 IncrementFactCount

VOID IncrementFactCount(factPtr);
VOID *factPtr;

Purpose: This function should be called for each external copy of pointer to a
fact to let CLIPS know that such an outstanding external reference
exists. As long as an fact's count is greater than zero, CLIPS will not
release its memory because there may be outstanding pointers to the
fact. However, the fact can still benctionallyretracted, i.e. the fact
will appearto no longer be in the fact-list. The fact address aways
can be safelgxaminedising the fact access functions as long as the
count for the fact is greater than zero. Retracting an already
retracted fact will have no effect, however, the function AddFact
should not be called twice for the same pointer created using
CreateFact Note that this function only needs to be caled if you
are storing pointers to facts that may later be referenced by external
code after the fact has been retracted.

Arguments: A generic pointer to a fact.

Returns: No meaningful return value.

4.4.14 LoadFacts

int LoadFacts(fleName);
char *fileName;

Purpose: Loads a set of facts into the CLIPS data base (the C equivalent of
the CLIPSload-factscommand).

Arguments: A string representing the name of the file.

Returns: Returns an integer; if zero, an error occurred while opening the file.
If non-zero no errors were detected while performing the load.

CLIPS Advanced Programming Guide 63

CLIPS Reference Manual

4.4.15 PutFactSlot

int PutFactSlot(factPtr,slotName,&theValue);

VOID *factPtr;
char *slotName;

DATA_OBJECT theValue;

Purpose:

Arguments:

Returns:

Warning:

4.4.16 Retract

int Retract(factPtr);
VOID *factPtr;

Purpose:

Arguments:

Returns:

Other:

64

Sets the slot value of a fact.

1) A generic pointer to a fact data structure.

2) The name of the dlot to be set (NULL should be used for the
implied multifield slot of an implied deftemplate).

3) A pointer to a DATA_OBJECT that contains the sot’'s new
value. A multifield or implied multifield slot should only be
passed a multifield value. A single field slot should only be
passed a single field value. See sections 3.3.3 and 3.3.4 for
information on setting the value stored in a DATA_OBJECT.

Boolean value. TRUE if the dot value was successfully set,
otherwise FALSE.

Do not use this function to change the slot value of a fact that has
already been asserted. This function should only be used on facts
created usin@reateFact

Retracts a fact from the CLIPS fact-list (the C equivaent of the
CLIPSretract command).

A generic pointer to a fact structure (usualy captured as the return
value from acall to AssertString or Assert). If the NULL pointer is
used, then all facts will be retracted.

An integer; zero (0) if fact already has been retracted, otherwise a
one (1).

The caller of RetractFact is responsible for insuring that the fact
passed as an argument is ill valid. The functions
IncrementFactCount and DecrementFactCountcan be used to
inform CLIPS whether a fact is still in use.

Section 4 - Embedding CLIPS

JSC-25012

4.4.17 SaveFacts

int SaveFacts(fileName,saveScope,NULL);
char *fileName;
int saveScope;

Purpose: Saves the facts in the fact-list to the specified file (the C equivalent
of the CLIPSsave-factscommand).

Arguments: A string representing the name of the file and an integer constant
representing the scope for the facts being saved which should be
either LOCAL_SAVE or VISIBLE_SAVE. The third argument is
used internally by the CLIPS save-facts command and should be set
to NULL when called from user code.

Returns: Returns an integer; if zero, an error occurred while opening the file.
If non-zero no errors were detected while performing the save.

4.4.18 SetFactDuplication

int SetFactDuplication(value);

int value;

Purpose: Sets the fact duplication behavior (the C equivalent of the CLIPS
set-fact-duplication command). When this behavior is disabled (by
default), asserting a duplicate of a fact aready in the fact-list
produces no effect. When enabled, the duplicate fact is asserted with
a new fact-index.

Arguments: The new value for the behavior: CLIPS TRUE (1) to enable the
behavior and CLIPS_FALSE (0) to disable it.

Returns: Returns the old value for the behavior.

4.4.19 SetFactListChanged

VOID SetFactListChanged(changedFlag);
int changedFlag;

Purpose: Sets the internal boolean flag which indicates when changes to the
fact list have occurred. This function is normally used to reset the
flag to zero after GetFactListChanged() returns non-zero.

CLIPS Advanced Programming Guide 65

CLIPS Reference Manual

Arguments: An integer indicating whether changes in the fact list have occurred
(non-zero) or not (0).

Returns: Nothing useful.

4.5 DEFFACTS FUNCTIONS

The following function calls are used for manipulating deffacts.

4.5.1 DeffactsModule

char *DeffactsModule(theDeffacts);
VOID *theDeffacts;

Purpose: Returns the module in which a deffacts is defined (the C equivalent
of the CLIPSdeffacts-modulecommand).

Arguments: A generic pointer to a deffacts.
Returns: A string containing the name of the module in which the deffactsis
defined.

4.5.2 FindDeffacts

VOID *FindDeffacts(deffactsName);
char *deffactsName;

Purpose: Returns a generic pointer to a named deffacts.

Arguments: The name of the deffacts to be found.

Returns: A generic pointer to the named deffacts if it exists, otherwise
NULL.

4 5.3 GetDeffactsList

VOID GetDeffactsList(&returnValue,theModule);
DATA_OBJECT returnValue;
VOID *theModule;

Purpose: Returns the list of deffacts in the specified module as a multifield
value in the returnValue DATA_OBJECT (the C equivalent of the
CLIPS get-deffacts-listfunction).

66 Section 4 - Embedding CLIPS

JSC-25012

Arguments: 1) A pointer to the caller’s DATA_OBJECT in which the return
value will be stored. The multifield functions described in
section 3.2.4 can be used to retrieve the deffacts names from the
list.

2) A generic pointer to the module from which the list will be
extracted. A NULL pointer indicates that the list is to be
extracted from al | modules.

Returns: No meaningful return value.

4 5.4 GetDeffactsName

char *GetDeffactsName(deffactsPtr);
VOID *deffactsPtr;

Purpose: Returns the name of a deffacts.
Arguments: A generic pointer to a deffacts data structure.
Returns: A string containing the name of the deffacts.

4 5.5 GetDeffactsPPForm

char *GetDeffactsPPForm(deffactsPtr);
VOID *deffactsPtr;

Purpose: Returns the pretty print representation of a deffacts.
Arguments: A generic pointer to a deffacts data structure.
Returns: A string containing the pretty print representation of the deffacts (or

the NULL pointer if no pretty print representation exists).

4.5.6 GetNextDeffacts

VOID *GetNextDeffacts(deffactsPtr);
VOID *deffactsPtr;

Purpose: Provides access to the list of deffacts.
Arguments: A generic pointer to a deffacts data structure (or NULL to get the
first deffacts).

CLIPS Advanced Programming Guide 67

CLIPS Reference Manual

Returns: A generic pointer to the first deffacts in the list of deffacts if
deffactsPtris NULL, otherwise a generic pointer to the deffacts
immediately following deffactsPtrin the list of deffacts. If
deffactsPtris the last deffacts in the list of deffacts, then NULL is
returned.

4.5.7 IsDeffactsDeletable

int IsDeffactsDeletable(deffactsPtr);
VOID *deffactsPtr;

Purpose: Indicates whether or not a particular deffacts can be deleted.

Arguments: A generic pointer to a deffacts data structure.

Returns: An integer; zero (0) if the deffacts cannot be deleted, otherwise a
one (1).

4 5.8 ListDeffacts

VOID ListDeffacts(logicalName,theModule);
char *logicalName;

VOID *theModule;
Purpose: Prints the list of deffacts (the C equivaent of the CLIPS
list-deffacts command).
Arguments: 1) The logical name to which the listing output is sent.

2) A generic pointer to the module containing the deffacts to be
listed. A NULL pointer indicates that deffacts in all modules
should be listed.

Returns: No meaningful return value.

4.5.9 Undeffacts

int Undeffacts(deffactsPtr);
VOID *deffactsPtr;

Purpose: Removes a deffacts construct from CLIPS (the C equivaent of the
CLIPSundeffactscommand).

Arguments: A generic pointer to a deffacts data structure. If the NULL pointer is
used, then all deffacts will be deleted.

68 Section 4 - Embedding CLIPS

JSC-25012

Returns: An integer; zero (0) if the deffacts could not be deleted, otherwise a
one (1).
4.6 DEFRULE FUNCTIONS

The following function calls are used for manipulating defrules.

4.6.1 DefruleHasBreakpoint

int DefruleHasBreakpoint(defrulePtr);
VOID *defrulePtr;

Purpose: Indicates whether or not a particular defrule has a breakpoint set.

Arguments: A generic pointer to a defrule data structure.

Returns: An integer; one (1) if a breakpoint exists for the rule, otherwise a
zero (0).

4.6.2 DefruleModule

char *DefruleModule(theDefrule);
VOID *theDefrule;

Purpose: Returns the module in which a defrule is defined (the C equivalent
of the CLIPSdefrule-module command).

Arguments: A generic pointer to a defrule.
Returns: A string containing the name of the module in which the defrule is
defined.

4.6.3 FindDefrule

VOID *FindDefrule(defruleName);
char *defruleName;

Purpose: Returns a generic pointer to a named defrule.
Arguments: The name of the defrule to be found.
Returns: A generic pointer to the named defrule if it exists, otherwise NULL.

CLIPS Advanced Programming Guide 69

CLIPS Reference Manual

4.6.4 GetDefruleList

VOID GetDefruleList(&returnValue,theModule);
DATA OBJECT returnValue;
VOID *theModule;

Purpose: Returns the list of defrules in the specified module as a multifield
value in the returnValue DATA_OBJECT (the C equivalent of the
CLIPS get-defrule-list function)..

Arguments: 1) A pointer to the caller’s DATA_OBJECT in which the return
value will be stored. The multifield functions described in
section 3.2.4 can be used to retrieve the defrule names from the
list.

2) A generic pointer to the module from which the list will be
extracted. A NULL pointer indicates that the list is to be
extracted from al | modules.

Returns: No meaningful return value.

4.6.5 GetDefruleName

char *GetDefruleName(defrulePtr);
VOID *defrulePtr;

Purpose: Returns the name of a defrule.
Arguments: A generic pointer to a defrule data structure.
Returns: A string containing the name of the defrule.

4.6.6 GetDefrulePPForm

char *GetDefrulePPForm(defrulePtr);
VOID *defrulePtr;

Purpose: Returns the pretty print representation of a defrule.
Arguments: A generic pointer to a defrule data structure.
Returns: A string containing the pretty print representation of the defrule (or

the NULL pointer if no pretty print representation exists).

70 Section 4 - Embedding CLIPS

JSC-25012

4.6.7 GetDefruleWatchActivations

int GetDefruleWatchActivations(defrulePtr);
VOID *defrulePtr;

Purpose: Indicates whether or not a particular defrule is being watched for
activations.

Arguments: A generic pointer to a defrule data structure.

Returns: An integer; one (1) if the defrule is being watched for activations,

otherwise a zero (0).

4.6.8 GetDefruleWatchFirings

int GetDefruleWatchFirings(defrulePtr);
VOID *defrulePtr;

Purpose: Indicates whether or not a particular defrule is being watched for
rule firings.

Arguments: A generic pointer to a defrule data structure.

Returns: An integer; one (1) if the defrule is being watched for rule firings,

otherwise a zero (0).

4.6.9 GetincrementalReset
int GetincrementalReset();

Purpose: Returns the current value of the incremental reset behavior (the C
equivalent of the CLIP§et-incremental-resetcommand).

Arguments: None.

Returns: An integer; CLIPS FALSE (0) if the behavior is disabled and
CLIPS_TRUE (1) if the behavior is enabled.

4.6.10 GetNextDefrule

VOID *GetNextDefrule(defrulePtr);
VOID *defrulePtr;

Purpose: Provides access to the list of defrules.

CLIPS Advanced Programming Guide 71

CLIPS Reference Manual

Arguments: A generic pointer to a defrule data structure (or NULL to get the
first defrule).

Returns: A generic pointer to the first defrule in the list of defrules if
defrulePtris NULL, otherwise a generic pointer to the defrule
immediately following defrulePtrin the list of defrules. If
defrulePtris the last defrule in the list of defrules, then NULL is
returned.

4.6.11 IsDefruleDeletable

int IsDefruleDeletable(defrulePtr);
VOID *defrulePtr;

Purpose: Indicates whether or not a particular defrule can be deleted.

Arguments: A generic pointer to a defrule data structure.

Returns: Aninteger; zero (0) if the defrule cannot be deleted, otherwise aone
(1)

4.6.12 ListDefrules

VOID ListDefrules(logicalName,theModule);
char *logicalName;
VOID *theModule;

Purpose: Prints the list of defrules (the C equivaent of the CLIPS
list-defrules command).

Arguments: 1) The logical name to which the listing output is sent.
2) A generic pointer to the module containing the defrules to be
listed. A NULL pointer indicates that defrules in al modules
should be listed.

Returns: No meaningful return value.
4.6.13 Matches

int Matches(defrulePtr);
VOID *defrulePtr;

72 Section 4 - Embedding CLIPS

JSC-25012

Prints the partial matches and activations of a defrule (the C

Purpose:
equivalent of the CLIP&atchescommand).
Arguments: A generic pointer to a defrule data structure.
Returns: An integer; zero (0) if the rule was not found, otherwise a one (1).

4.6.14 Refresh

int Refresh(defrulePtr);
VOID *defrulePtr;

Refreshes a rule (the C equivalent of the CLi&f82sh command).

Purpose:
Arguments: A generic pointer to a defrule data structure.
Returns: An integer; zero (0) if the rule was not found, otherwise a one (1).

4.6.15 RemoveBreak

int RemoveBreak(defrulePtr);
VOID *defrulePtr;

Purpose: Removes a breakpoint for the specified defrule (the C equivalent of
the CLIPSremove-breakcommand).

Arguments: A generic pointer to a defrule data structure.

Returns: An integer; zero (0) if a breakpoint did not exist for the rule,

otherwise a one (1).

4.6.16 SetBreak

VOID SetBreak(defrulePtr);
VOID *defrulePtr;

Purpose: Adds a breakpoint for the specified defrule (the C equivalent of the
CLIPSset-breakcommand).

Arguments: A generic pointer to a defrule data structure.

Returns: No meaningful return value.

CLIPS Advanced Programming Guide 73

CLIPS Reference Manual

4.6.17 SetDefruleWatchActivations
VOID SetDefruleWatchActivations(newState,defrulePtr);
int newState;
VOID *defrulePtr;

Purpose: Sets the activations watch item for a specific defrule.

Arguments: The new activations watch state and a generic pointer to a defrule
data structure.

4.6.18 SetDefruleWatchFirings
VOID SetDefruleWatchFirings(newState,defrulePtr);
int newState;
VOID *defrulePtr;

Purpose: Sets the rule firing watch item for a specific defrule.

Arguments: The new rule firing watch state and a generic pointer to a defrule
data structure.

4.6.19 SetiIncrementalReset

int SetincrementalReset(value);

int value;

Purpose: Sets the incremental reset behavior. When this behavior is enabled
(by default), newly defined rules are update based upon the current
state of the fact-list. When disabled, newly defined rules are only
updated by facts added after the rule is defined (the C equivalent of
the CLIPSset-incremental-resetcommand).

Arguments: The new value for the behavior: CLIPS TRUE (1) to enable the
behavior and CLIPS_FALSE (0) to disable it.

Returns: Returns the old value for the behavior.

4.6.20 ShowBreaks
VOID ShowBreaks(logicalName,theModule);

char *logicalName;
VOID *theModule;

74 Section 4 - Embedding CLIPS

Purpose:

Arguments:

Returns:

4.6.21 Undefrule

JSC-25012

Prints the list of all rule breakpoints (the C equivalent of the CLIPS
show-breakscommand).

1) The logical name to which the listing output is sent.

2) A generic pointer to the module for which the breakpoints are to
be listed. A NULL pointer indicates that the the breakpoints in
all modules should be listed.

No meaningful return value.

int Undefrule(defrulePtr);

VOID *defrulePtr;

Purpose:

Arguments:

Returns:

Removes a defrule from CLIPS (the C equivalent of the CLIPS
undefrule command).

A generic pointer to a defrule data structure. If the NULL pointer is
used, then all defrules will be deleted.

An integer; zero (0) if the defrule could not be deleted, otherwise a
one (1).

4.7 AGENDA FUNCTIONS

The following function calls are used for manipulating the agenda.

4.7.1 AddRunFunction

int AddRunFunction(runltemName,runFunction,priority);

char *runlitemName;
VOID (*runFunction)();

int priority;
VOID runFunction();

Purpose:

Allows a user-defined function to be called after each rule firing.
Such a feature is useful, for example, when bringing data in from
some type of external device which does not operate in a
synchronous manner. A user may define an external function which
will be called by CLIPS after every rule is fired to check for the
existence of new data.

CLIPS Advanced Programming Guide 75

CLIPS Reference Manual

Arguments:

Returns:

Example

1) The name associated with the user-defined run function. This
name is used by the functi®@moveRunFunction

2) A pointer to the user-defined function which is to be called after
every rule firing.

3) The priority of the run item which determines the order in which
run items are called (higher priority items are caled first). The
values -2000 to 2000 are reserved for CLIPS system defined run
items and should not be used for user defined run items.

Returns a zero value if the run item could not be added, otherwise a
non-zero value is returned.

This following function checks to see if akey on the keyboard has been hit. If akey has been hit,
then the fact (stop-processing) is asserted into the fact-list.

VOID CheckKB()

if (CheckKeyboardStatus() == KB_HIT)
{ AssertString("stop-processing"); }

This function can now be added to the list of functions called after every rule firing by making

the following function call.

AddRunFunction("check-kb",checkKB,3000);

4.7.2 Agenda

VOID Agenda(logicalName,theModule)

char *logicalName;
VOID *theModule;

Purpose:

Arguments:

Returns:

76

Prints the list of rules currently on the agenda (the C equivalent of
the CLIPSagendacommand).

1) The logical name to which the listing output is sent.

2) A generic pointer to the module containing the agenda to be
listed. A NULL pointer indicates that the agendas of all modules
should be listed.

No meaningful return value.

Section 4 - Embedding CLIPS

JSC-25012

4.7.3 ClearFocusStack
VOID ClearFocusStack();

Purpose: Removes al modules from the focus stack (the C equivalent of the
CLIPSclear-focus-stackcommand).

Arguments: None.

Returns: No meaningful return value.

4.7.4 DeleteActivation

int DeleteActivation(activationPtr);
VOID *activationPtr;

Purpose: Removes an activation from the agenda.

Arguments: A generic pointer to an activation data structure. If the NULL
pointer is used, then all activations will be deleted.

Returns: An integer; zero (0) if the activation could not be deleted, otherwise
aone (1).

4.7.5 Focus

VOID Focus(defmodulePtr);
VOID *defmodulePtr;

Purpose: Sets the current focus (the C equivalent of the CLIPS focus
command).

Arguments: A generic pointer to a defmodule data structure.

Returns: No meaningful value.

4.7.6 GetActivationName

char *GetActivationName(activationPtr);
VOID *activationPtr;

Purpose: Returns the name of the defrule from which the activation was
generated.

CLIPS Advanced Programming Guide 77

CLIPS Reference Manual
Arguments: A generic pointer to an activation data structure.

Returns: A string containing a defrule name.

4.7.7 GetActivationPPForm

VOID GetActivationPPForm(buffer,bufferLength,activationPtr);
char *buffer;

int bufferLength;

VOID *activationPtr;

Purpose: Returns the pretty print representation of an agenda activation in the
caller's buffer.

Arguments: 1) A pointer to the caller's character buffer.
2) The maximum number of characters which could be stored in
the caller's buffer (not including space for the terminating null

character).
3) A generic pointer to an activation data structure.

4.7.8 GetActivationSalience

int GetActivationSalience(activationPtr);
VOID *activationPtr;

Purpose: Returns the salience value associated with an activation. This
salience value may be different from the the salience value of the
defrule which generated the activation (due to dynamic salience).

Arguments: A generic pointer to an activation data structure.

Returns: The integer salience value of an activation.

4.7.9 GetAgendaChanged
int GetAgendaChanged();

Purpose: Determines if any changes to the agenda of rule activations have
occurred. If this function returns a non-zero integer, it is the user's
responsibility to call SetAgendaChanged(0) to reset the interna
flag. Otherwise, this function will continue to return non-zero even
when no changes have occurred. This function is primarily used to
determine when to update a display tracking rule activations.

78 Section 4 - Embedding CLIPS

JSC-25012

Arguments: None.

Returns: 0 if no changes to the agenda have occurred, non-zero otherwise.

4.7.10 GetFocus
VOID *GetFocus();

Purpose: Returns the module associated with the current focus (the C
equivalent of the CLIPSyet-focusfunction).

Arguments: None.

Returns: A generic pointer to a defmodule data structure (or NULL if the
focus stack is empty).

4.7.11 GetFocusStack

VOID GetFocusStack(&returnValue);
DATA_OBJECT returnValue;

Purpose: Returns the module names in the focus stack as a multifield valuein
the returnValue DATA_OBJECT (the C equivalent of the CLIPS
get-focus-stackfunction).

Arguments: A pointer to the caller’s DATA_OBJECT in which the return value
will be stored. The multifield functions described in section 3.2.4
can be used to retrieve the defrule names from the list.

4.7.12 GetNextActivation

VOID *GetNextActivation(activationPtr);
VOID *activationPtr;

Purpose: Provides access to the list of activations on the agenda.

Arguments: A generic pointer to an activation data structure (or NULL to get the
first activation on the agenda).

Returns: A generic pointer to the first activation on the agenda if
activationPtris NULL, otherwise a generic pointer to the activation
immediately following activationPtron the agenda. If activationPtr
is the last activation on the agenda, then NULL is returned.

CLIPS Advanced Programming Guide 79

CLIPS Reference Manual

4.7.13 GetSalienceEvaluation

int GetSalienceEvaluation();

Purpose:

Arguments:

Returns:

4.7.14 GetStrategy
int GetStrategy();

Purpose:

Arguments:

Returns:

4.7.15 ListFocusStack

Returns the current salience evaluation behavior (the C equivaent
of the CLIPSget-salience-evaluatiorcommand).

None.

An integer (see SetSalienceEvaluation for the list of defined
constants).

Returns the current conflict resolution strategy (the C equivalent of
the CLIPSget-strategycommand).

None.

An integer (see SetStrategy for the list of defined strategy
constants).

VOID ListFocusStack(logicalName);

char *logicalName;

Purpose:

Arguments:

Returns:

4.7.16 PopFocus
VOID *PopFocus();

Purpose:

80

Prints the current focus stack (the C equivaent of the CLIPS list-
focus-stackcommand).

The logical name to which the listing output is sent.

No meaningful return value.

Removes the current focus from the focus stack and returns the
module associated with that focus (the C equivalent of the CLIPS
pop-focusfunction).

Section 4 - Embedding CLIPS

JSC-25012

Arguments: None.

Returns: A generic pointer to a defmodule data structure.

4.7.17 RefreshAgenda

VOID RefreshAgenda(theModule);
VOID *theModule;

Purpose: Recomputes the salience values for all activations on the agenda and
then reorders the agenda (the C equivaent of the CLIPS refresh-
agendacommand).

Arguments: A generic pointer to the module containing the agenda to be

refreshed. A NULL pointer indicates that the agendas of all modules
should be refreshed.

Returns: No meaningful return value.run

4.7.18 RemoveRunFunction
int RemoveRunFunction(runltemName);
char *runltemName;

Purpose: Removes a named function from the list of functions to be called
after every rule firing.

Arguments: The name associated with the user-defined run function. Thisis the
same name that was used when the run function was added with the
functionAddRunFunction.

Returns: Returns the integer value 1 if the named function was found and

removed, otherwise 0 is returned.

4.7.19 ReorderAgenda

VOID ReorderAgenda(theModule);
VOID *theModule;

Purpose: Reorders the agenda based on the current conflict resolution
strategy and current activation saliences.

CLIPS Advanced Programming Guide 81

CLIPS Reference Manual

Arguments:

Returns:
4.7.20 Run

long int Run(runLimit);
long int runLimit;

Purpose:

Arguments:

Returns:

A generic pointer to the module containing the agenda to be
reordered. A NULL pointer indicates that the agendas of all
modules should be reordered.

No meaningful return value.

Allows rules to execute (the C equivalent of the CLIPS run
command).

An integer which defines how many rules should fire before
returning. If runLimit is a negative integer, rules will fire until the
agenda is empty.

Returns an integer value; the number of rules that were fired.

4.7.21 SetActivationSalience

int SetActivationSalience(activationPtr,newSalience);

VOID *activationPtr;
int newSalience;

Purpose:

Arguments:

Returns:

Other:

Sets the salience value of an activation. The salience value of the
defrule which generated the activation is unchanged.

1) A generic pointer to an activation data structure.
2) The new salience value (which is not restricted to the -10000 to
+10000 range).

The old salience value of the activation.

The function ReorderAgendashould be called after salience values
have been changed to update the agenda.

4.7.22 SetAgendaChanged

VOID SetAgendaChanged(changedFlag);

int changedFlag;

82

Section 4 - Embedding CLIPS

JSC-25012

Purpose: Sets the internal boolean flag which indicates when changes to the
agenda of rule activations have occurred. This function is normally
used to reset the flag to zero after GetAgendaChanged() returns
non-zero.

Arguments: An integer indicating whether changes in the agenda have occurred
(non-zero) or not (0).

Returns: Nothing useful.

4.7.23 SetSalienceEvaluation

int SetSalienceEvaluation(value);

int value;

Purpose: Sets the salience evaluation behavior (the C equivalent of the CLIPS
set-salience-evaluatiocommand).

Arguments: The new value for the behavior — one of the following defined
integer constants:
WHEN_DEFINED
WHEN_ACTIVATED
EVERY_CYCLE

Returns: Returns the old value for the behavior.

4.7.24 SetStrategy

int SetStrategy(value);

int value;
Purpose: Sets the conflict resolution strategy (the C equivalent of the CLIPS
set-strategycommand).
Arguments: The new value for the behavior — one of the following defined

integer constants:

DEPTH_STRATEGY
BREADTH_STRATEGY
LEX_STRATEGY
MEA_STRATEGY
COMPLEXITY_STRATEGY

CLIPS Advanced Programming Guide 83

CLIPS Reference Manual

SIMPLICITY_STRATEGY
RANDOM_STRATEGY

Returns: Returns the old value for the strategy.

4.8 DEFGLOBAL FUNCTIONS

The following function calls are used for manipulating defglobals.

4.8.1 DefglobalModule

char *DefglobalModule(theDefglobal);
VOID *theDefglobal;

Purpose: Returns the module in which a defglobal is defined (the C
equivalent of the CLIP8efglobal-modulecommand).

Arguments: A generic pointer to a defglobal.
Returns: A string containing the name of the module in which the defglobal
is defined.

4.8.2 FindDefglobal

VOID *FindDefglobal(globalName);
char *globalName;

Purpose: Returns a generic pointer to a named defglobal.

Arguments: The name of the defglobal to be found (e.fpr ?*x*).

Returns: A generic pointer to the named defglobal if it exists, otherwise
NULL.

4.8.3 GetDefglobalList

VOID GetDefglobalList(&returnValue,theModule);
DATA_OBJECT returnValue;
VOID *theModule;

Purpose: Returns the list of defglobals in the specified module as a multifield
value in the returnValue DATA_OBJECT (the C equivalent of the
CLIPS get-defglobal-listfunction).

84 Section 4 - Embedding CLIPS

JSC-25012

Arguments: 1) A pointer to the caller’s DATA_OBJECT in which the return
value will be stored. The multifield functions described in
section 3.2.4 can be used to retrieve the defglobal names from
the list.

2) A generic pointer to the module from which the list will be
extracted. A NULL pointer indicates that the list is to be
extracted from al | modules.

Returns: No meaningful return value.

4.8.4 GetDefglobalName

char *GetDefglobalName(defglobalPtr);
VOID *defglobalPtr;

Purpose: Returns the name of a defglobal.
Arguments: A generic pointer to a defglobal data structure.
Returns: A string containing the name of the defglobal (&.fpr ?*x*).

4.8.5 GetDefglobalPPForm

char *GetDefglobalPPForm(defglobalPtr);

VOID *defglobalPtr;
Purpose: Returns the pretty print representation of a defglobal.
Arguments: A generic pointer to a defglobal data structure.
Returns: A string containing the pretty print representation of the defglobal

(or the NULL pointer if no pretty print representation exists).

4.8.6 GetDefglobalValue

int GetDefglobalValue(globalName,&vPtr);
char *globalName;
DATA OBJECT vPtr,

Purpose: Returns the value of a defglobal.

Arguments: 1) The name of the global variable to be retrieved (efgr ?*y*).

CLIPS Advanced Programming Guide 85

CLIPS Reference Manual

2) A pointer toaDATA_OBJECT in which the value is stored (see
sections 3.2.3 and 3.3.4 for details on this data structure).

Returns: An integer; zero (0) if the defglobal was not found, otherwise a one
(1). The DATA_OBJECT VPtr is assigned the current value of the
defglobal.

4.8.7 GetDefglobalValueForm

VOID GetDefglobalValueForm(buffer,bufferLength,defglobalPtr);
char *buffer;

int bufferLength;

VOID *defglobalPtr;

Purpose: Returns a printed representation of a defglobal and its current value
in the caller's buffer. For example,

PX*=5

Arguments: 1) A pointer to the caller'smaracter buffer.

2) The maximum number of characters which could be stored in
the caller's buffer (not including space for the terminating null
character).

3) A generic pointer to a defglobal data structure.

4.8.8 GetDefglobalWatch

int GetDefglobalWatch(defglobalPtr);
VOID *defglobalPtr;

Purpose: Indicates whether or not a particular defglobal is being watched.

Arguments: A generic pointer to a defglobal data structure.

Returns: An integer; one (1) if the defglobal is being watched, otherwise a
zero (0).

4.8.9 GetGlobalsChanged
int GetGlobalsChanged();

Purpose: Determines if any changes to global variables have occurred. If this
function returns a non-zero integer, it is the user's responsibility to
call SetGlobalsChanged(0) to reset the internal flag. Otherwise, this

86 Section 4 - Embedding CLIPS

JSC-25012

function will continue to return non-zero even when no changes
have occurred. This function is primarily used to determine when to
update a display tracking global variables.

Arguments: None.
Returns: 0 if no changes to global variables have occurred, non-zero
otherwise.

4.8.10 GetNextDefglobal

VOID *GetNextDefglobal(defglobalPtr);
VOID *defglobalPtr;

Purpose: Provides access to the list of defglobals.

Arguments: A generic pointer to a defglobal data structure (or NULL to get the
first defglobal).

Returns: A generic pointer to the first defglobal in the list of defglobals if

defglobalPtris NULL, otherwise a generic pointer to the defglobal
immediately following defglobalPtrin the list of defglobals. If
defglobalPtris the last defglobal in the list of defglobals, then
NULL is returned.

4.8.11 GetResetGlobals

int GetResetGlobals();

Purpose: Returns the current value of the reset global variables behavior (the
C equivalent of the CLIP$et-reset-globalscommand).

Arguments: None.

Returns: An integer; CLIPS FALSE (0) if globas are not reset and
CLIPS_TRUE (1) if globals are reset.

4.8.12 IsDefglobalDeletable

int IsDefglobalDeletable(defglobalPtr);
VOID *defglobalPtr;

Purpose: Indicates whether or not a particular defglobal can be deleted.

CLIPS Advanced Programming Guide 87

CLIPS Reference Manual

Arguments: A generic pointer to a defglobal data structure.
Returns: An integer; zero (0) if the defgloba cannot be deleted, otherwise a
one (1).

4.8.13 ListDefglobals

VOID ListDefglobals(logicalName,theModule);
char *logicalName;
VOID *theModule;

Purpose: Prints the list of defglobals (the C equivalent of the CLIPS
list-defglobals command).

Arguments: 1) The logical name to which the listing output is sent.
2) A generic pointer to the module containing the defglobals to be
listed. A NULL pointer indicates that defglobals in all modules
should be listed.

Returns: No meaningful return value.

4.8.14 SetDefglobalValue

int SetDefglobalValue(globalName,&vPtr);
char *globalName;
DATA OBJECT vPtr,

Purpose: Sets the value of a defglobal.

Arguments: 1) The name of the global variable to be set (efgr ?*y*).
2) A pointer to a DATA_OBJECT in which the new vaue is
contained (see sections 3.2.3 and 3.3.4 for details on this data
structure).

Returns: An integer; zero (0) if the defglobal was not found, otherwise a one

().

4.8.15 SetDefglobalWatch
VOID SetDefglobalWatch(newState,defglobalPtr);

int newState;
VOID *defglobalPtr;

88 Section 4 - Embedding CLIPS

JSC-25012
Purpose: Sets the globals watch item for a specific defglobal.

Arguments: The new globals watch state and a generic pointer to a defglobal
data structure.

4.8.16 SetGlobalsChanged

VOID SetGlobalsChanged(changedFlag);

int changedFlag;

Purpose: Sets the internal boolean flag which indicates when changes to
global variables have occurred. This function is normally used to
reset the flag to zero after GetGlobalsChanged() returns non-zero.

Arguments: An integer indicating whether changes in global variables have
occurred (non-zero) or not (0).

Returns: Nothing useful.

4.8.17 SetResetGlobals

int SetResetGlobals(value);

int value;

Purpose: Sets the reset-globals behavior (the C equivaent of the CLIPS
set-reset-globalscommand). When this behavior is enabled (by
default) global variables are reset to their original values when the
resetcommand is performed.

Arguments: The new value for the behavior: CLIPS TRUE (1) to enable the
behavior and CLIPS_FALSE (0) to disable it.

Returns: Returns the old value for the behavior.

4.8.18 ShowDefglobals

VOID ShowDefglobals(logicalName,theModule);
char *logicalName;
VOID *theModule;

Purpose: Prints the list of defglobals and their current values (the C
equivalent of the CLIPShow-defglobalscommand).

Arguments: 1) The logical name to which the listing output is sent.

CLIPS Advanced Programming Guide 89

CLIPS Reference Manual

2) A generic pointer to the module containing the defglobals to be
displayed. A NULL pointer indicates that defglobals in all
modules should be displayed.

Returns: No meaningful return value.

4.8.19 Undefglobal

int Undefglobal(defglobalPtr);
VOID *defglobalPtr;

Purpose: Removes a defglobal from CLIPS (the C equivalent of the CLIPS
undefglobal command).

Arguments: A generic pointer to a defglobal data structure. If the NULL pointer
is used, then all defglobals will be deleted.

Returns: An integer; zero (0) if the defglobal could not be deleted, otherwise
aone (1).
4.9 DEFFUNCTION FUNCTIONS

The following function calls are used for manipulating deffunctions.

4.9.1 DeffunctionModule

char *DeffunctionModule(theDeffunction);
VOID *theDeffunction;

Purpose: Returns the module in which a deffunction is defined (the C
equivalent of the CLIP8effunction-module command).

Arguments: A generic pointer to a deffunction.

Returns: A string containing the name of the module in which the
deffunction is defined.

4.9.2 FindDeffunction

VOID *FindDeffunction(deffunctionName);
char *deffunctionName;

Purpose: Returns a generic pointer to a named deffunction.

90 Section 4 - Embedding CLIPS

JSC-25012

Arguments: The name of the deffunction to be found.
Returns: A generic pointer to the named deffunction if it exists, otherwise
NULL.

4.9.3 GetDeffunctionList

VOID GetDeffunctionList(&returnValue,theModule);
DATA_OBJECT returnValue;
VOID *theModule;

Purpose: Returns the list of deffunctions in the specified module as a
multifield value in the returnValue DATA_OBJECT (the C
equivalent of the CLIPQyet-deffunction-list function).

Arguments: 1) A pointer to the caller’s DATA_OBJECT in which the return
value will be stored. The multifield functions described in
section 3.2.4 can be used to retrieve the deffunction names from
the list.

2) A generic pointer to the module from which the list will be
extracted. A NULL pointer indicates that the list is to be
extracted from al | modules.

Returns: No meaningful return value.

4.9.4 GetDeffunctionName

char *GetDeffunctionName(deffunctionPtr);
VOID *deffunctionPtr;

Purpose: Returns the name of a deffunction.
Arguments: A generic pointer to a deffunction data structure.
Returns: A string containing the name of the deffunction.

4.9.5 GetDeffunctionPPForm

char *GetDeffunctionPPForm(deffunctionPtr);
VOID *deffunctionPtr;

Purpose: Returns the pretty print representation of a deffunction.

CLIPS Advanced Programming Guide 91

CLIPS Reference Manual

Arguments: A generic pointer to a deffunction data structure.

Returns: A string containing the pretty print representation of the deffunction
(or the NULL pointer if no pretty print representation exists).

4.9.6 GetDeffunctionWatch

int GetDeffunctionWatch(deffunctionPtr);
VOID *deffunctionPtr;

Purpose: Indicates whether or not a particular deffunction is being watched.

Arguments: A generic pointer to a deffunction data structure.

Returns: An integer; one (1) if the deffunction is being watched, otherwise a
zero (0).

4.9.7 GetNextDeffunction

VOID *GetNextDeffunction(deffunctionPtr);
VOID *deffunctionPtr;

Purpose: Provides access to the list of deffunctions.

Arguments: A generic pointer to a deffunction data structure (or NULL to get
the first deffunction).

Returns: A generic pointer to the first deffunction in the list of deffunctions if
deffunctionPtris NULL, otherwise a generic pointer to the
deffunction immediately following deffunctionPtrin the list of
deffunctions. If deffunctionPtris the last deffunction in the list of
deffunctions, then NULL is returned.

4.9.8 IsDeffunctionDeletable

int IsDeffunctionDeletable(deffunctionPtr);
VOID *deffunctionPtr;

Purpose: Indicates whether or not a particular deffunction can be deleted.

Arguments: A generic pointer to a deffunction data structure.

Returns: An integer; zero (0) if the deffunction cannot be deleted, otherwise a
one (1).

92 Section 4 - Embedding CLIPS

JSC-25012

4 .9.9 ListDeffunctions

VOID ListDeffunctions(logicalName,theModule);
char *logicalName;
VOID *theModule;

Purpose: Prints the list of deffunction (the C equivalent of the CLIPS
list-deffunctions command).

Arguments: 1) The logical name to which the listing output is sent.
2) A generic pointer to the module containing the deffunctions to
be listed. A NULL pointer indicates that deffunctions in all
modules should be listed.

Returns: No meaningful return value.

4.9.10 SetDeffunctionWatch

VOID SetDeffunctionWatch(newState,deffunctionPtr);
int newState;
VOID *deffunctionPtr;

Purpose: Sets the deffunctions watch item for a specific deffunction.

Arguments: The new deffunctions watch state and a generic pointer to a
deffunction data structure.

4.9.11 Undeffunction

int Undeffunction(deffunctionPtr);
VOID *deffunctionPtr;

Purpose: Removes a deffunction from CLIPS (the C equivalent of the CLIPS
undeffunction command).

Arguments: A generic pointer to the deffunction (NULL means to delete all
deffunctions).

Returns: An integer; zero (0) if the deffunction could not be deleted,
otherwise a one (1).

CLIPS Advanced Programming Guide 93

CLIPS Reference Manual

4.10 DEFGENERIC FUNCTIONS

The following function calls are used for manipulating generic functions.

4.10.1 DefgenericModule

char *DefgenericModule(theDefgeneric);
VOID *theDefgeneric;

Purpose: Returns the module in which a defgeneric is defined (the C
equivalent of the CLIP8efgeneric-modulecommand).

Arguments: A generic pointer to a defgeneric.
Returns: A string containing the name of the module in which the defgeneric
is defined.

4.10.2 FindDefgeneric

VOID *FindDefgeneric(defgenericName);
char *defgenericName;

Purpose: Returns a generic pointer to a named generic function.
Arguments: The name of the generic to be found.
Returns: A generic pointer to the named generic function if it exists,

otherwise NULL.

4.10.3 GetDefgenericList

VOID GetDefgenericList(&returnValue,theModule);
DATA_OBJECT returnValue;
VOID *theModule;

Purpose: Returns the list of defgenerics in the specified module as a
multifield value in the retunValue DATA_OBJECT (the C
equivalent of the CLIPSyet-defgeneric-listfunction).

Arguments: 1) A pointer to the caller’s DATA_OBJECT in which the return
value will be stored. The multifield functions described in
section 3.2.4 can be used to retrieve the defgeneric names from
the list.

94 Section 4 - Embedding CLIPS

JSC-25012

2) A generic pointer to the module from which the list will be
extracted. A NULL pointer indicates that the list is to be
extracted from al | modules.

Returns: No meaningful return value.

4.10.4 GetDefgenericName

char *GetDefgenericName(defgenericPtr);
VOID *defgenericPtr;

Purpose: Returns the name of a generic function.
Arguments: A generic pointer to a defgeneric data structure.
Returns: A string containing the name of the generic function.

4.10.5 GetDefgenericPPForm

char *GetDefgenericPPForm(defgenericPtr);
VOID *defgenericPtr;

Purpose: Returns the pretty print representation of a generic function.

Arguments: A generic pointer to a defgeneric data structure.

Returns: A string containing the pretty print representation of the generic
function (or the NULL pointer if no pretty print representation
exists).

4.10.6 GetDefgenericWatch

int GetDefgenericWatch(defgenericPtr);
VOID *defgenericPtr;

Purpose: Indicates whether or not a particular defgeneric is being watched.

Arguments: A generic pointer to a defgeneric data structure.

Returns: An integer; one (1) if the defgeneric is being watched, otherwise a
zero (0).

CLIPS Advanced Programming Guide 95

CLIPS Reference Manual

4.10.7 GetNextDefgeneric

VOID *GetNextDefgen
VOID *defgenericPtr;

Purpose:

Arguments:

Returns:

4.10.8 IsDefgenericDeleta

eric(defgenericPtr);

Provides access to the list of generic functions.

A generic pointer to a defgeneric data structure (or NULL to get the
first generic function).

A generic pointer to the first generic function in the list of generic
functions if defgenericPtis NULL, otherwise a generic pointer to
the generic function immediately following defgenericPtiin the list
of generic functions. If defgenericPtis the last generic function in
the list of generic functions, then NULL is returned.

ble

int IsDefgenericDeletable(defgenericPtr);

VOID *defgenericPtr;

Purpose:

Arguments:

Returns:

4.10.9 ListDefgenerics

Indicates whether or not a particular generic function and al its
methods can be deleted.

A generic pointer to a defgeneric data structure.

An integer: zero (0) if the generic function and all its methods
cannot be deleted, otherwise a one (1).

VOID ListDefgenerics(logicalName,theModule);

char *logicalName;
VOID *theModule;

Purpose:

Arguments:

Returns:

96

Prints the list of defgenerics (the C equivalent of the CLIPS
list-defgenericscommand).

1) The logical name to which the listing output is sent.

2) A generic pointer to the module containing the defgenerics to be
listed. A NULL pointer indicates that defgenericsin all modules
should be listed.

No meaningful return value.

Section 4 - Embedding CLIPS

JSC-25012

4.10.10 SetDefgenericWatch
VOID SetDefgenericWatch(newState,defgenericPtr);
int newState;
VOID *defgenericPtr;

Purpose: Sets the defgenerics watch item for a specific defgeneric.

Arguments: The new generic-functions watch state and a generic pointer to a
defgeneric data structure.

4.10.11 Undefgeneric

int Undefgeneric(defgenericPtr);
VOID *defgenericPtr;

Purpose: Removes a generic function and all its methods from CLIPS (the C
equivalent of the CLIP8ndefgenericcommand).

Arguments: A generic pointer to the generic function (NULL means to delete all
generic functions).

Returns: Aninteger: zero (0) if the generic function and all its methods could
not be deleted, otherwise a one (1).

4.11 DEFMETHOD FUNCTIONS

The following function calls are used for manipulating generic function methods.

4.11.1 GetDefmethodDescription

VOID GetDefmethodDescription(buffer,bufferLength,
defgenericPtr,methodindex);

char *buf;

int bufLength;

VOID *defgenericPtr;

unsigned methodindex;

Purpose: Stores a synopsis of the method parameter restrictionsin the caller's
buffer.
Arguments: 1) A pointer to the caller's buffer.

2) The maximum number of characters which could be stored in
the caller's buffer (not including space for the terminating null
character).

CLIPS Advanced Programming Guide 97

CLIPS Reference Manual

3) A generic pointer to a defgeneric data structure.
4) The index of the generic function method.

Returns: No meaningful return value.

4.11.2 GetDefmethodList

VOID GetDefmethodList(defgenericPtr,&returnValue);
VOID *defgenericPtr;
DATA_OBJECT returnValue;

Purpose: Returns the list of currently defined defmethods for the specified
defgeneric. This function is the C equivalent of the CLIPS
get-defmethod-listcommand).

Arguments: 1) A generic pointer to the defgeneric (NULL for all defgenerics).
2) A pointer to the DATA_OBJECT in which the list of defmethod
constructs is to be stored.

Returns: A multifield value containing the list of defmethods constructs for
the specified defgeneric. The multifield functions described in
section 3.2.4 can be used to retrieve the defmethod names and
indices from the list. Note that the name and index for each
defmethod are stored as pairs in the return multifield value.

4.11.3 GetDefmethodPPForm
char *GetDefmethodPPForm(defgenericPtr,methodindex);
VOID *defgenericPtr;
unsigned methodindex;

Purpose: Returns the pretty print representation of a generic function method.

Arguments: 1) A generic pointer to a defgeneric data structure.
2) The index of the generic function method.

Returns: A string containing the pretty print representation of the generic

function method (or the NULL pointer if no pretty print
representation exists).

98 Section 4 - Embedding CLIPS

JSC-25012

4.11.4 GetDefmethodWatch

int GetDefmethodWatch(defgenericPtr,methodindex);
VOID *defgenericPtr;
unsigned methodindex

Purpose: Indicates whether or not a particular defmethod is being watched.

Arguments: A generic pointer to a defgeneric data structure and the index of the
generic function method.

Returns: An integer; one (1) if the defmethod is being watched, otherwise a
zero (0).

4.11.5 GetMethodRestrictions

VOID GetMethodRestrictions(defgenericPtr,methodindex,
&returnValue);

VOID *defgenericPtr;

unsigned methodIndex;

DATA OBJECT returnValue;

Purpose: Returns the restrictions for the specified method. This function is
the C equivalent of the CLIP§et-method-restrictionsfunction.

Arguments: 1) A generic pointer to the defgeneric (NULL for all defgenerics).
2) The index of the generic function method.
3) A pointer to the DATA_OBJECT in which the method
restrictions are stored.

Returns: A multifield value containing the restrictions for the specified
method (the description of the get-method-restrictionsfunction in
the Basic Programming Guide explains the meaning of the fields in
the multifield value). The multifield functions described in section
3.2.4 can be used to retrieve the method restrictions from the list.

4.11.6 GetNextDefmethod

unsigned GetNextDefmethod(defgenericPtr,methodindex);
VOID *defgenericPtr;
unsigned methodindex;

Purpose: Provides access to the list of methods for a particular generic
function.

CLIPS Advanced Programming Guide 99

CLIPS Reference Manual

Arguments:

Returns:

1) A generic pointer to a defgeneric data structure.
2) The index of a generic function method (O to get the first
method of the generic function).

The index of the first method in the list of methods for the generic
function if methodindexs 0, otherwise the index of the method
immediately following methodIindexn the list of methods for the
generic function. If methodIndexis the last method in the list of
methods for the generic function, then 0 is returned.

4.11.7 IsDefmethodDeletable

int IsDefmethodDeletable(defgenericPtr,methodindex);

VOID *defgenericPtr;

unsigned methodindex;

Purpose:

Arguments:

Returns:

4.11.8 ListDefmethods

Indicates whether or not a particular generic function method can be
deleted.

1) A generic pointer to a defgeneric data structure.
2) The index of the generic function method.

An integer: zero (0) if the method cannot be deleted, otherwise a
one (1).

VOID ListDefmethods(logicalName,defgenericPtr);

char *logicalName,;
VOID *defgenericPtr;

Purpose:

Arguments:

Returns:

100

Prints the list of methods for a particular generic function (the C
equivalent of the CLIP$st-defmethodscommand).

1) The logical name of the output destination to which tosend the
method listing

2) A generic pointer to the generic function (NULL to list methods
for all generic functions).

No meaningful return value.

Section 4 - Embedding CLIPS

JSC-25012

4.11.9 SetDefmethodWatch

VOID SetDefmethodWatch(newState,defgenericPtr,methodindex);
int newState;

VOID *defgenericPtr;

unsigned methodindex

Purpose: Sets the methods watch item for a specific defmethod.

Arguments: The new methods watch state, a generic pointer to a defgeneric data
structure, and the index of the generic function method.

4.11.10 Undefmethod

int Undefmethod(defgenericPtr,methodindex);
VOID *defgenericPtr;
unsigned methodindex;

Purpose: Removes a generic function method from CLIPS (the C equivalent
of the CLIPSundefmethod command).

Arguments: 1) A generic pointer to a defgeneric data structure (NULL to delete
all methods for all generic functions).
2) The index of the generic function method (0O to delete all
methods of the generic function - must be O if defgenericPtiis
NULL).

Returns: An integer: zero (0) if the method could not be deleted, otherwise a
one (1).

4.12 DEFCLASS FUNCTIONS

The following function calls are used for manipulating defclasses.

4.12.1 BrowseClasses

VOID BrowseClasses(logicalName,defclassPtr);
char *logicalName;
VOID *defclassPtr;

Purpose: Printsa“graph” of al classes which inherit from the specified class.
This function is the C equivalent of the CLIPS browse-classes
command.

CLIPS Advanced Programming Guide 101

CLIPS Reference Manual

Arguments: 1) The logical name of the output destination to which to send the
browse display.
2) A generic pointer to the class which is to be browsed.

Returns: No meaningful return value.

4.12.2 ClassAbstractP

int ClassAbstractP(defclassPtr);
VOID *defclassPtr;

Purpose: Determines if a class is concrete or abstract, i.e. if a class can have
direct instances or not. This function is the C equivalent of the
CLIPSclass-abstractpcommand.

Arguments: A generic pointer to the class.

Returns: The integer 1 if the class is abstract, or O if the class is concrete.

4.12.3 ClassReactiveP

int ClassReactiveP(defclassPtr);
VOID *defclassPtr;

Purpose: Determinesif a classis reactive or non-reactive, i.e. if objects of the
class can match object patterns. This function is the C equivalent of
the CLIPSclass-reactivepcommand.

Arguments: A generic pointer to the class.

Returns: The integer 1 if the class is reactive, or 0 if the class is non-reactive.

4.12.4 ClassSlots

VOID ClassSlots(defclassPtr,&result,inheritFlag);
VOID *defclassPtr;

DATA_OBJECT result;

int inheritFlag;

Purpose: Groups the names of dots of a class into a multifield data object.
This function is the C equivalent of the CLIPS class-slots
command.

Arguments: 1) A generic pointer to the class.

102 Section 4 - Embedding CLIPS

Returns:

4.12.5 ClassSubclasses

JSC-25012

2) Pointer to the data object in which to store the multifield. See
sections 3.3.3 and 3.3.4 for information on getting the value stored
in a DATA_OBJECT.

3) The integer 1 to include inherited slots or O to only include
explicitly defined slots.

No meaningful return value.

VOID ClassSubclasses(defclassPtr,&result,inheritFlag);

VOID *defclassPtr;

DATA_OBJECT result;

int inheritFlag;

Purpose:

Arguments:

Returns:

4.12.6 ClassSuperclasses

Groups the names of subclasses of a class into a multifield data
object. This function is the C equivalent of the CLIPS class-
subclassesommand.

1) A generic pointer to the class.

2) Pointer to the data object in which to store the multifield. See
sections 3.3.3 and 3.3.4 for information on setting the value stored
in a DATA OBJECT.

3) The integer 1 to include inherited subclasses or 0 to only include
direct subclasses.

No meaningful return value.

VOID ClassSuperclasses(defclassPtr,&result,inheritFlag);

VOID *defclassPtr;

DATA_OBJECT result;

int inheritFlag;

Purpose:

Arguments:

Groups the names of superclasses of a class into a multifield data
object. This function is the C equivalent of the CLIPS class-
superclassesommand.

1) A generic pointer to the class.

2) Pointer to the data object in which to store the multifield.

3) The integer 1 to include inherited superclasses or 0 to only
include direct superclasses.

CLIPS Advanced Programming Guide 103

CLIPS Reference Manual

Returns: No meaningful return value.

4.12.7 DefclassModule

char *DefclassModule(theDefclass);
VOID *theDefclass;

Purpose: Returns the module in which a defclass is defined (the C equivalent
of the CLIPSdefclass-modulecommand).

Arguments: A generic pointer to a defclass.

Returns: A string containing the name of the module in which the defclassis
defined.

4.12.8 DescribeClass

VOID DescribeClass(logicalName,defclassPtr);
char *logicalName;
VOID *defclassPtr;

Purpose: Prints a summary of the specified class including: abstract/concrete
behavior, slots and facets (direct and inherited) and recognized
message-handlers (direct and inherited). This function is the C
equivalent of the CLIP8escribe-clasommand.

Arguments: 1) The logical name of the output destination to which to send the

description.
2) A generic pointer to the class which is to be described.

Returns: No meaningful return value.

4.12.9 FindDefclass

VOID *FindDefclass(defclassName);
char *defclassName;

Purpose: Returns a generic pointer to a named class.
Arguments: The name of the class to be found.
Returns: A generic pointer to the named class if it exists, otherwise NULL.

104 Section 4 - Embedding CLIPS

JSC-25012

4.12.10 GetDefclassList

VOID GetDefclassList(&returnValue,theModule);
DATA OBJECT returnValue;
VOID *theModule;

Purpose: Returns the list of defclasses in the specified module as a multifield
value in the returnValue DATA_OBJECT (the C equivalent of the
CLIPS get-defclass-lisfunction).

Arguments: 1) A pointer to the caller’'s DATA_OBJECT in which the return
value will be stored. The multifield functions described in
section 3.2.4 can be used to retrieve the defclass names from the
list.

2) A generic pointer to the module from which the list will be
extracted. A NULL pointer indicates that the list is to be
extracted from al | modules.

Returns: No meaningful return value.

4.12.11 GetDefclassName

char *GetDefclassName(defclassPtr);
VOID *defclassPtr;

Purpose: Returns the name of a class.
Arguments: A generic pointer to a defclass data structure.
Returns: A string containing the name of the class.

4.12.12 GetDefclassPPForm

char *GetDefclassPPForm(defclassPtr);
VOID *defclassPtr,

Purpose: Returns the pretty print representation of a class.
Arguments: A generic pointer to a defclass data structure.
Returns: A string containing the pretty print representation of the class (or

the NULL pointer if no pretty print representation exists).

CLIPS Advanced Programming Guide 105

CLIPS Reference Manual

4.12.13 GetDefclassWatchlnstances

int GetDefclassWatchInstances(defclassPtr);
VOID *defclassPtr;

Purpose: Indicates whether or not a particular defclass is being watched for
instance creation and deletions.

Arguments: A generic pointer to a defclass data structure.
Returns: An integer; one (1) if the defclass is being watched, otherwise a
zero (0).

4.12.14 GetDefclassWatchSlots

int GetDefclassWatchSlots(defclassPtr);
VOID *defclassPtr;

Purpose: Indicates whether or not a particular defclass is being watched for
slot changes.

Arguments: A generic pointer to a defclass data structure.

Returns: An integer; one (1) if the defclass is being watched for slot changes,
otherwise a zero (0).

4.12.15 GetNextDefclass

VOID *GetNextDefclass(defclassPtr);
VOID *defclassPtr,;

Purpose: Provides access to the list of classes.

Arguments: A generic pointer to a defclass data structure (or NULL to get the
first class).

Returns: A generic pointer to thefirst classin the list of classesif defclassPtr

is NULL, otherwise a generic pointer to the class immediately
following defclassPtiin the list of classes. If defclassPtis the last
class in the list of classes, then NULL is returned.

106 Section 4 - Embedding CLIPS

JSC-25012

4.12.16 IsDefclassDeletable

int IsDefclassDeletable(defclassPtr);
VOID *defclassPtr;

Purpose: Indicates whether or not a particular class and al its subclasses can
be deleted.

Arguments: A generic pointer to a defclass data structure.

Returns: An integer; zero (0) if the class cannot be deleted, otherwise a one
(2).

4.12.17 ListDefclasses
VOID ListDefclasses(logicalName,theModule);
char *logicalName;
VOID *theModule;

Purpose: Prints the list of defclasses (the C equivalent of the CLIPS
list-defclassescommand).

Arguments: 1) The logical name to which the listing output is sent.
2) A generic pointer to the module containing the defclasses to be
listed. A NULL pointer indicates that defclasses in al modules
should be listed.

Returns: No meaningful return value.

4.12.18 SetDefclassWatchlnstances
VOID SetDefclassWatchinstances(newState,defclassPtr);
int newState;
VOID *defclassPtr;

Purpose: Sets the instances watch item for a specific defclass.

Arguments: The new instances watch state and a generic pointer to a defclass
data structure.

4.12.19 SetDefclassWatchSlots
VOID SetDefclassWatchSlots(newState,defclassPtr);
int newState;
VOID *defclassPtr;

CLIPS Advanced Programming Guide 107

CLIPS Reference Manual

Purpose: Sets the slots watch item for a specific defclass.
Arguments: The new dlots watch state and a generic pointer to a defclass data
structure.

4.12.20 SlotAllowedValues

VOID SlotAllowedValues(defclassPtr,slotName,&result);
VOID *defclassPtr;

char *slotName;

DATA_OBJECT result;

Purpose: Groups the alowed-values for a dot into a multifield data object.
This function is the C equivalent of the CLIPS slot-allowed-values
function.

Arguments: 1) A generic pointer to the class.

2) Name of the slot.

3) Pointer to the data object in which to store the multifield. The
multifield functions described in section 3.2.4 can be used to
retrieve the allowed values from the list.

Returns: No meaningful return value.

4.12.21 SlotCardinality

VOID SlotCardinality(defclassPtr,slotName,result);
VOID *defclassPtr;

char *slotName;

DATA_OBJECT *result;

Purpose: Groups the cardinality information for a slot into a multifield data
object. This function is the C equivalent of the CLIPS slot-
cardinality function.

Arguments: 1) A generic pointer to the class.
2) Name of the slot.

3) Pointer to the data object in which to store the multifield.

Returns: No meaningful return value.

108 Section 4 - Embedding CLIPS

JSC-25012

4.12.22 SlotDirectAccessP

int SlotDirectAccessP(defclassPtr,slotName);
VOID *defclassPtr,
char *slotName;

Purpose: Determines if the specified slot is directly accessible.

Arguments: 1) A generic pointer to a defclass data structure.
2) The name of the slot.

Returns: An integer: 1 if the slot is directly accessible, otherwise 0.

4.12.23 SlotExistP

int SlotExistP(defclassPtr,slotName,inheritFlag);
VOID *defclassPtr,
char *slotName;

int inheritFlag;

Purpose: Determines if the specified slot exists.

Arguments: 1) A generic pointer to a defclass data structure.
2) The name of the slot.

Returns: An integer: If inheritFlag is O and the dlot is directly defined in the
specified class, then 1 is returned, otherwise O is returned. If
inheritFlag is 1 and the slot is defined either in the specified class or
an inherited class, then 1 is returned, otherwise 0 is returned.

4.12.24 SlotFacets

VOID SlotFacets(defclassPtr,slotName,result);
VOID *defclassPtr;

char *slotName;

DATA OBJECT *result;

Purpose: Groups the facet values of aclass dot into a multifield data object.
This function is the C equivalent of the CLIPS slot-facets
command. See section 10.8.1.11 in the Basic Programming Guide
for more detail.

Arguments: 1) A generic pointer to the class.

2) Name of the slot.
3) Pointer to the data object in which to store the multifield.

CLIPS Advanced Programming Guide 109

CLIPS Reference Manual

Returns: No meaningful return value.

4.12.25 SlotlnitableP
int SlotInitableP(defclassPtr,slotName);
VOID *defclassPtr,
char *slotName;

Purpose: Determines if the specified slot is initable.

Arguments: 1) A generic pointer to a defclass data structure.
2) The name of the slot.

Returns: An integer: 1 if the slot is initable, otherwise 0.

4.12.26 SlotPublicP

int SlotPublicP(defclassPtr,slotName);
VOID *defclassPtr,

char *slotName;

Purpose: Determines if the specified slot is public.
Arguments: 1) A generic pointer to a defclass data structure.
2) The name of the slot.

Returns: An integer: 1 if the slot is public, otherwise O.

4.12.27 SlotRange

VOID SlotRange(defclassPtr,slotName,result);
VOID *defclassPtr,

char *slotName;

DATA_ OBJECT *result;

Purpose: Groups the numeric range information for a slot into a multifield
data object. This function is the C equivaent of the CLIPS
slot-range function.

Arguments: 1) A generic pointer to the class.

2) Name of the slot.
3) Pointer to the data object in which to store the multifield.

110 Section 4 - Embedding CLIPS

JSC-25012

Returns: No meaningful return value.

4.12.28 SlotSources

VOID SlotSources(defclassPtr,slotName,result);
VOID *defclassPtr;

char *slotName;

DATA_OBJECT *result;

Purpose: Groups the names of the class sources of aslot into amultifield data
object. This function is the C equivalent of the CLIPS slot-sources
command. See section 10.8.1.12 in the Basic Programming Guide
for more detail.

Arguments: 1) A generic pointer to the class.
2) Name of the slot.
3) Pointer to the data object in which to store the multifield.

Returns: No meaningful return value.

4.12.29 SlotTypes

VOID SlotTypes(defclassPtr,slotName,result);
VOID *defclassPtr;

char *slotName;
DATA_OBJECT *result;

Purpose: Groups the names of the primitive data types allowed for a dot into
a multifield data object. This function is the C equivalent of the
CLIPSslot-typesfunction.

Arguments: 1) A generic pointer to the class.
2) Name of the slot.
3) Pointer to the data object in which to store the multifield.

Returns: No meaningful return value.

4.12.30 SlotWritableP

int SlotWritableP(defclassPtr,slotName);
VOID *defclassPtr,
char *slotName;

Purpose: Determines if the specified slot is writable.

CLIPS Advanced Programming Guide 111

CLIPS Reference Manual

Arguments: 1) A generic pointer to a defclass data structure.
2) The name of the slot.

Returns: An integer: 1 if the slot is writable, otherwise 0.

4.12.31 SubclassP

int SubclassP(defclassPtrl,defclassPtr2);
VOID *defclassPtrl, *defclassPtr2;

Purpose: Determines if a class is a subclass of another class.

Arguments: 1) A generic pointer to a defclass data structure.
2) A generic pointer to a defclass data structure.

Returns: An integer: 1 if the first class is a subclass of the second class.

4.12.32 SuperclassP

int SuperclassP(defclassPtrl,defclassPtr2);
VOID *defclassPtrl, *defclassPtr2;

Purpose: Determines if a class is a superclass of another class.

Arguments: 1) A generic pointer to a defclass data structure.
2) A generic pointer to a defclass data structure.

Returns: An integer: 1 if the first class is a superclass of the second class.

4.12.33 Undefclass

int Undefclass(defclassPtr);
VOID *defclassPtr;

Purpose: Removes a class and al its subclasses from CLIPS (the C
equivalent of the CLIP8ndefclasscommand).

Arguments: A generic pointer to a defclass data structure.
Returns: An integer; zero (0) if the class could not be deleted, otherwise a
one (1).

112 Section 4 - Embedding CLIPS

JSC-25012

4.13 INSTANCE FUNCTIONS

The following function calls are used for manipulating instances.

4.13.1 BinaryLoadlInstances

long BinaryLoadInstances(fileName);
char *fileName;

Purpose: Loads a set of instances from a binary file into the CLIPS data base
(the C equivalent of the CLIF8oad-instancescommand).

Arguments: A string representing the name of the binary file.

Returns: Returns the number of instances restored or -1 if the file could not
be accessed.

4.13.2 BinarySavelnstances

long BinarySavelnstances(fileName,saveCode,NULL,CLIPS TRUE);
char *fileName;
int saveCode;

Purpose: Saves the instances in the system to the specified binary file (the C
equivalent of the CLIP8save-instancegommand).

Arguments: 1) A string representing the name of the binary file.
2) Aninteger flag indicating whether to save local (current module
only) or visble instances. Use either the constant
LOCAL_SAVE or VISIBLE_SAVE.
3) Should always be NULL.
4) Should always be CLIPS_TRUE.

Returns: Returns the number of instances saved.

4.13.3 CreateRawlnstance

VOID *CreateRawlnstance(defclassPtr,instanceName);
VOID *defclassPtr;
char *instanceName;

Purpose: Creates an empty instance with the specified name of the specified
class. No dlot overrides or class default initializations are performed
for the instance.

CLIPS Advanced Programming Guide 113

CLIPS Reference Manual

Arguments: 1) A generic pointer to the class of the new instance.
2) The name of the new instance.

Returns: A generic pointer to the new instance, NULL on errors.

WARNING: This function bypasses message-passing.

4.13.4 DecrementinstanceCount

VOID DecrementinstanceCount(instancePtr);
VOID *instancePtr;

Purpose: This function should only be called to reverse the effects of a
previous call to IncrementlnstanceCount(). As long as an instance's
count is greater than zero, the memory allocated to it cannot be
released for other use.

Arguments: A generic pointer to the instance.

Returns: No meaningful return value.

4.13.5 Deletelnstance

int Deletelnstance(instancePtr);
VOID *instancePtr;

Purpose: Deletes the specified instance(s).

Arguments: A generic pointer to the instance to be deleted. If the pointer is
NULL, all instances in the system are deleted.

Returns: Non-zero if successful, O otherwise.

WARNING: This function bypasses message-passing.

4.13.6 DirectGetSlot

VOID DirectGetSlot(instancePtr,slotName,result);
VOID *instancePtr;

char *slotName;

DATA OBJECT *result;

114 Section 4 - Embedding CLIPS

JSC-25012

Purpose: Stores the value of the specified dlot of the specified instance in the
caller's buffer (the C equivaent of the CLIPS dynamic-get
function).

Arguments: 1) A generic pointer to the instance.

2) The name of the slot.

3) The caller's buffer for the slot value. See sections 3.2.3 and 3.2.4
for information on getting the value stored in a
DATA_OBJECT.

Returns: No meaningful return value.

WARNING: This function bypasses message-passing.

4.13.7 DirectPutSlot

int DirectPutSlot(instancePtr,slotName,newValue);

VOID *instancePtr;
char *slotName;
DATA_OBJECT *newValue;

Purpose: Stores a value in the specified slot of the specified instance (the C
equivalent of the CLIP8ynamic-put function).

Arguments: 1) A generic pointer to the instance.
2) The name of the slot.
3) The cdler's buffer containing the new value (an error is
generated if this value is NULL). See sections 3.3.3 and 3.3.4
for information on setting the value stored in a
DATA_OBJECT.

Returns: Returns an integer; if zero, an error occurred while setting the slot.
If non-zero, no errors occurred.

WARNING: This function bypasses message-passing.

4.13.8 FindInstance

VOID *FindIinstance(theModule,instanceName,searchimports);
VOID *theModule;

char *instanceName,;

int searchimports;

Purpose: Returns the address of the specified instance.

CLIPS Advanced Programming Guide 115

CLIPS Reference Manual

Arguments: 1) A generic pointer to the module to be searched (NULL to search
the current module).
2) The name of the instance (should not include a module
specifier).
3) A boolean flag indicating whether imported modules should also
be searched: TRUE to search imported modules, otherwise
FALSE.

Returns: A generic pointer to the instance, NULL if the instance does not
exist.

4.13.9 GetlnstanceClass

VOID *GetlInstanceClass(instancePtr);
VOID *instancePtr;

Purpose: Determines the class of an instance.
Arguments: A generic pointer to an instance.
Returns: A generic pointer to the class of the instance.

4.13.10 GetlnstanceName

char *GetlnstanceName(instancePtr);
VOID *instancePtr;

Purpose: Determines the name of an instance.
Arguments: A generic pointer to an instance.
Returns: The name of the instance.

4.13.11 GetlnstancePPForm

VOID GetlnstancePPForm(buffer,bufferLength,instancePtr);
char *buffer;

int bufferLength;

VOID *instancePtr;

Purpose: Returns the pretty print representation of an instance in the caler's
buffer.

116 Section 4 - Embedding CLIPS

Arguments:

Returns:

JSC-25012

1) A pointer to the caller's character buffer.

2) The maximum number of characters which could be stored in
the caller's buffer (not including space for the terminating null
character).

3) A generic pointer to an instance.

No meaningful return value. The instance pretty print form is stored
in the caller's buffer.

4.13.12 GetlnstancesChanged

int GetlnstancesChanged();

Purpose:

Arguments:

Returns:

4.13.13 GetNextInstance

Determines if any changes to instances of user-defined instances
have occurred, e.g. instance creations/deletions or slot value
changes. If this function returns a non-zero integer, it is the user's
responsibility to call SetInstancesChanged(0) to reset the internal
flag. Otherwise, this function will continue to return non-zero even
when no changes have occurred. This function is primarily used to
determine when to update a display tracking instances.

None.

0 if no changes to instances of user-defined classes have occurred,
non-zero otherwise.

VOID *GetNextlnstance(instancePtr);

VOID *instancePtr;

Purpose:

Arguments:

Returns:

Provides access to the list of instances.

A generic pointer to an instance (or NULL to get the first instance
in the list).

A generic pointer to the first instance in the list of instances if
instancePtris NULL, otherwise a pointer to the instance
immediately following instancePtrin the list. If instancePtris the
last instance in the list, then NULL is returned.

CLIPS Advanced Programming Guide 117

CLIPS Reference Manual

4.13.14 GetNextlnstancelnClass

VOID *GetNextInstancelnClass(defclassPtr,instancePtr);
VOID *defclassPtr,*instancePtr;

Purpose: Provides access to the list of instances for a particular class.

Arguments: 1) A generic pointer to a class.
2) A generic pointer to an instance (or NULL to get the first
instance in the specified class).

Returns: A generic pointer to the first instance in the list of instances for the
specified class if instancePtris NULL, otherwise a pointer to the
instance immediately following instancePtrin the list. If
instancePtris the last instance in the class, then NULL is returned.

4.13.15 IncrementlinstanceCount

VOID IncrementinstanceCount(instancePtr);
VOID *instancePtr;

Purpose: This function should be called for each external copy of an instance
address to let CLIPS know that such an outstanding external
reference exists. Aslong as an instance's count is greater than zero,
CLIPS will not release its memory because there may be
outstanding pointers to the instance. However, the instance can till
be functionallydeleted, i.e. the instance will appearto no longer be
in the system. The instance address always can be safely passed to
instance access functions as long as the count for the instance is
greater than zero. These functions will recognize when an instance
has been functionally deleted.

Arguments: A generic pointer to the instance.

Returns: No meaningful return value.

118 Section 4 - Embedding CLIPS

Example

[* */
/* Incorrect */

[* */

VOID InstanceReferenceExample

JSC-25012

VOID *mylnstancePtr;
myInstancePtr = FindInstance(NULL,"my-instance",CLIPS_TRUE);
I* */

[* Instance my-instance could be potentially */
[* deleted during the run. */

I* */
Run(-1L);
I* */

[* This next function call could dereference */
[* a dangling pointer and cause a crash. */
/~k

*/

Deletelnstance(mylnstancePtr);

}
[F=========%*/
[* Correct */
[F=========*/

VOID InstanceReferenceExample
VOID *mylnstancePtr;
mylInstancePtr = FindIinstance(NULL,"my-instance",CLIPS_TRUE);

I* */
[* The instance is correctly marked so that a dangling */

* pointer cannot be created during the run. */

I* */

IncrementinstanceCount(mylnstancePtr);
Run(-1L);
DecrementinstanceCount(mylnstancePtr);

I* */
[* The instance can now be safely deleted using the pointer. */
I* */

Deletelnstance(mylnstancePtr);

}

CLIPS Advanced Programming Guide 119

CLIPS Reference Manual

4.13.16 Instances

VOID Instances(logicalName,modulePtr,className,subclassFlag);
char *logicalName;

VOID *defmodulePtr;

char *className;

int subclassFlag;

Purpose: Prints the list of all direct instances of a specified class currently in
the system (the C equivalent of the CLIiIRStancescommand).

Arguments: 1) The logical name to which output is sent.

2) A generic pointer to a defmodule data structure (NULL
indicates to list all instances of al classes in al modules—the
third and fourth arguments are ignored).

3) The name of the class for which to list instances (NULL
indicates to list al instances of all classes in the specified
module—the fourth argument is ignored).

4) A flag indicating whether or not to list recursively direct
instances of subclasses of the named class in the specified
module. 0 indicates no, and any other value indicates yes.

Returns: No meaningful return value.

4.13.17 Loadlnstances

long LoadInstances(fileName);
char *fileName;

Purpose: Loads a set of instances into the CLIPS data base (the C equivalent
of the CLIPSoad-instancescommand).

Arguments: A string representing the name of the file.
Returns: Returns the number of instances loaded or -1 if the file could not be
accessed.

4.13.18 Makelnstance

VOID *Makelnstance(makeCommand);
char *makeCommand,;

Purpose: Creates and initializes an instance of a user-defined class (the C
equivalent of the CLIP&ake-instance function).

120 Section 4 - Embedding CLIPS

JSC-25012

Arguments: A string containing anake-instancecommand in the format below:

(<instance-name> of <class-name> <slot-override>*)
<slot-override> :== (<slot-name> <constant>*)

Returns: A generic pointer to the new instance, NULL on errors.

Example

Makelnstance("(henry of boy (age 8))"):

4.13.19 Restorelnstances

long Restorelnstances(fileName);
char *fileName;

Purpose: Loads a set of instances into the CLIPS data base (the C equivalent
of the CLIPSrestore-instancescommand).

Arguments: A string representing the name of the file.

Returns: Returns the number of instances restored or -1 if the file could not
be accessed.

4.13.20 Savelnstances

long Savelnstances(fleName,saveCode,NULL,CLIPS_TRUE);
char *fileName;

int saveCode;
Purpose: Saves the instances in the system to the specified file (the C
equivalent of the CLIPSave-instancesommand).
Arguments: 1) A string representing the name of the file.
2) Aninteger flag indicating whether to save local (current module
only) or visible instances. Use ether the constant
LOCAL_SAVE or VISIBLE_SAVE.
3) Should always be NULL.
4) Should always be CLIPS_TRUE.
Returns: Returns the number of instances saved.

CLIPS Advanced Programming Guide 121

CLIPS Reference Manual

4.13.21 Send

VOID Send(instanceBuffer,msg,msgArgs,result);
DATA_OBJECT *instanceBuffer, *result;

char *msg,*msgArgs;

Purpose:

Arguments:

Returns:

Example

Message-passing from C Sends a message with the specified
arguments to the specified object and stores the result in the caller's
buffer (the C equivalent of the CLIB®&ndfunction).

1) A data value holding the object (instance, symbol, float, etc.)
which will receive the message.

2) The message.

3) A string containing any constantarguments separated by blanks
(this argument can be NULL).

4) Caller's buffer for storing the result of the message. See sections
3.2.3 and 3.2.4 for information on getting the value stored in a
DATA_OBJECT.

No meaningful return value.

VOID SendMessageExample()

DATA OBJECT insdata, rtn;

VOID *mylnstancePtr;

mylnstancePtr = Makelnstance("(my-instance of MY-CLASS");
SetType(insdata,INSTANCE_ADDRESS);
SetValue(insdata,mylnstancePtr);

Send(&insdata,"my-msg","1 abc 3",&rtn);

}

4.13.22 SetinstancesChanged

VOID SetinstancesChanged(changedFlag);

int changedFlag;

Purpose:

Arguments:

122

Sets the internal boolean flag which indicates when changes to
instances of user-defined classes have occurred. This function is
normally used to reset the flag to zero after GetlnstancesChanged()
returns non-zero.

An integer indicating whether changes in instances of user-defined
classes have occurred (non-zero) or not (0).

Section 4 - Embedding CLIPS

JSC-25012

Returns: Nothing useful.

4.13.23 Unmakelnstance

int Unmakelnstance(instancePtr);
VOID *instancePtr;

Purpose: This function is equivaent to Deletelnstance except that it uses
message-passing instead of directly deleting the instance(s).

Arguments: A generic pointer to the instance to be deleted. If the pointer is
NULL, all instances in the system are deleted.

Returns: Non-zero if successful, O otherwise.

4.13.24 ValidInstanceAddress

int ValidinstanceAddress(instancePtr);
VOID *instancePtr;

Purpose: Determines if an instance referenced by an address till exists. See
the description of IncrementinstanceCount.

Arguments: The address of the instance.

Returns: The integed if the instance still exists, 0 otherwise.

4.14 DEFMESSAGE-HANDLER FUNCTIONS

The following function calls are used for manipulating defmessage-handlers.

4.14.1 FindDefmessageHandler

unsigned FindDefmessageHandler(defclassPtr,

handlerName,handlerType);
VOID *defclassPtr,
char *handlerName,*handlerType;

Purpose: Returns an index to the specified message-handler within the list of
handlers for a particular class.

Arguments: 1) A generic pointer to the class to which the handler is attached.
2) The name of the handler.

CLIPS Advanced Programming Guide 123

CLIPS Reference Manual

3) The type of the handler: around, before, primary or after.

Returns: An index to the specified handler if it exists, otherwise 0.

4.14.2 GetDefmessageHandlerList

VOID GetDefmessageHandlerList(defclassPtr,&returnValue,
includelnheritedp);
VOID *defclassPtr;

DATA_OBJECT returnValue;
int includelnheritedp

Purpose: Returns the list of currently defined defmessage-handlers for the
specified class. This function is the C equivaent of the CLIPS
get-defmessage-handler-listommand).

Arguments: 1) A generic pointer to the class (NULL for all classes).
2) A pointer to the DATA_OBJECT in which the list of
defmessage-handler constructs is to be stored.
3) An integer flag indicating whether to list inherited handlers
(CLIPS_TRUE to list them or CLIPS_FALSE to not list them).

Returns: No meaningful value. The second argument to this function is set to
a multifield value containing the list of defmessage-handler
constructs for the specified class. The multifield functions described
in section 3.2.4 can be used to retrieve the defmessage-handler
class, name, and type from the list. Note that the class, name, and
type for each defmessage-handler are stored as triplets in the return
multifield value.

4.14.3 GetDefmessageHandlerName

char *GetDefmessageHandlerName(defclassPtr,handlerindex);
VOID *defclassPtr;
unsigned handlerindex;

Purpose: Returns the name of a message-handler.

Arguments: 1) A generic pointer to a defclass data structure.
2) The index of a message-handler.

Returns: A string containing the name of the message-handler.

124 Section 4 - Embedding CLIPS

JSC-25012

4.14.4 GetDefmessageHandlerPPForm

char *GetDefmessageHandlerPPForm(defclassPtr,handlerindex);

VOID *defclassPtr;
unsigned handlerindex;

Purpose: Returns the pretty print representation of a message-handler.

Arguments: 1) A generic pointer to a defclass data structure.
2) The index of a message-handler.

Returns: A string containing the pretty print representation of the
message-handler (or the NULL pointer if no pretty print
representation exists).

4.14.5 GetDefmessageHandlerType
char *GetDefmessageHandlerType(defclassPtr,handlerindex);
VOID *defclassPtr;
unsigned handlerindex;

Purpose: Returns the type (around, before, primary or after) of a
message-handler.

Arguments: 1) A generic pointer to a defclass data structure.
2) The index of a message-handler.

Returns: A string containing the type of the message-handler.

4.14.6 GetDefmessageHandlerWatch

int GetDefmessageHandlerWatch(defclassPtr,handlerindex);
VOID *defclassPtr;
unsigned handlerindex

Purpose: Indicates whether or not a particular defmessage-handler is being
watched.
Arguments: A generic pointer to a defclass data structure and the index of the

message-handler.

Returns: An integer; one (1) if the defmessage-handler is being watched,
otherwise a zero (0).

CLIPS Advanced Programming Guide 125

CLIPS Reference Manual

4.14.7 GetNextDefmessageHandler

unsigned GetNextDefmessageHandler(defclassPtr,handlerindex);
VOID *defclassPtr;
unsigned handlerindex;

Purpose: Provides access to the list of message-handlers.

Arguments: 1) A generic pointer to a defclass data structure.
2) Anindex to a particular message-handler for the class (or O to
get the first message-handler).

Returns: An index to the first handler in the list of handlers if handlerindexs
0, otherwise an index to the handler immediately following
handlerindexn the list of handlers for the class. If handlerindexs
the last handler in the list of handlers for the class, then O is
returned.

4.14.8 IsDefmessageHandlerDeletable

int IsDefmessageHandlerDeletable(defclassPtr,handlerindex);
VOID *defclassPtr;
unsigned handlerindex;

Purpose: Indicates whether or not a particular message-handler can be
deleted.
Arguments: 1) A generic pointer to a defclass data structure.

2) The index of a message-handler.

Returns: An integer; zero (0) if the message-handler cannot be deleted,
otherwise a one (1).

4.14.9 ListDefmessageHandlers

VOID ListDefmessageHandlers(logicalName,defclassPtr,
includelnheritedp);

char *logicalName;

VOID *defclassPtr;

int includelnheritedp

Purpose: Prints the list of message-handlers for the specified class. This
function is the C equivalent of the CLIPS
list-defmessage-handlersommand).

126 Section 4 - Embedding CLIPS

JSC-25012

Arguments: 1) The logical name to which the listing output is sent.
2) A generic pointer to the class (NULL for all classes).
3) An integer flag indicating whether to list inherited handlers
(CLIPS_TRUE to list them or CLIPS_FALSE to not list them).

Returns: No meaningful return value.

4.14.10 PreviewSend

VOID PreviewSend(logicalName,defclassPtr,messageName);
char *logicalName;

VOID *defclassPtr;

char *messageName;

Purpose: Prints alist of all applicable message-handlers for a message sent to
an instance of a particular class (the C equivalent of the CLIPS
preview-send command). Output is sent to the logical name
wdisplay.

Arguments: 1) The logical name to which output is sent.
2) A generic pointer to the class.
3) The message name.

Returns: No meaningful return value.

4.14.11 SetDefmessageHandlerWatch

VOID SetDefmessageHandlerWatch(newState,defclassPtr,
handlerindex);
int newState;
VOID *defclassPtr;
unsigned handlerindex

Purpose: Sets the message-handlers watch item for a specific defmessage-
handler.
Arguments: The new message-handlers watch state, a generic pointer to a

defclass data structure, and the index of the message-handler.

4.14.12 UndefmessageHandler
int UndefmessageHandler(defclassPtr,handlerindex);

VOID *defclassPtr;
unsigned handlerindex;

CLIPS Advanced Programming Guide 127

CLIPS Reference Manual

Purpose: Removes a message-handler from CLIPS (similanbugquivalent
to the CLIPS undefmessage-handlercommand - see
WildDeleteHandler).

Arguments: 1) A generic pointer to a defclass data structure (NULL to delete
all message-handlers in all classes).
2) The index of the message-handler (0 to delete all
message-handlers in the class - must be O if defclassPtris
NULL).

Returns: An integer; zero (0) if the message-handler could not be deleted,
otherwise a one (1).
4.15 DEFINSTANCES FUNCTIONS

The following function calls are used for manipulating definstances.

4.15.1 DefinstancesModule

char *DefinstancesModule(theDefinstances);
VOID *theDefinstances;

Purpose: Returns the module in which a definstances is defined (the C
equivalent of the CLIP8efinstances-modulecommand).

Arguments: A generic pointer to a definstances.

Returns: A string containing the name of the module in which the
definstances is defined.

4.15.2 FindDefinstances

VOID *FindDefinstances(definstancesName);
char *definstancesName,;

Purpose: Returns a generic pointer to a named definstances.

Arguments: The name of the definstances to be found.

Returns: A generic pointer to the named definstances if it exists, otherwise
NULL.

128 Section 4 - Embedding CLIPS

JSC-25012

4.15.3 GetDefinstancesList

VOID GetDefinstancesList(&returnValue,theModule);
DATA OBJECT returnValue;

VOID *theModule;

Purpose:

Arguments:

Returns:

Returns the list of definstances in the specified module as a
multifield value in the returnValue DATA_OBJECT (the C
equivalent of the CLIPQyet-definstances-lisfunction).

1) A pointer to the caller’s DATA_OBJECT in which the return
value will be stored. The multifield functions described in
section 3.2.4 can be used to retrieve the definstances names
from the list.

2) A generic pointer to the module from which the list will be
extracted. A NULL pointer indicates that the list is to be
extracted from al | modules.

No meaningful return value.

4.15.4 GetDefinstancesName

char *GetDefinstancesName(definstancesPtr);
VOID *definstancesPtr;

Purpose:
Arguments:

Returns:

Returns the name of a definstances.
A generic pointer to a definstances data structure.

A string containing the name of the definstances.

4.15.5 GetDefinstancesPPForm

char *GetDefinstancesPPForm(definstancesPtr);
VOID *definstancesPtr;

Purpose:
Arguments:

Returns:

Returns the pretty print representation of a definstances.
A generic pointer to a definstances data structure.
A string containing the pretty print representation of the

definstances (or the NULL pointer if no pretty print representation
exists).

CLIPS Advanced Programming Guide 129

CLIPS Reference Manual

4.15.6 GetNextDefinstances

VOID *GetNextDefinstances(definstancesPtr);
VOID *definstancesPtr;

Purpose:

Arguments:

Returns:

Provides access to the list of definstances.

A generic pointer to a definstances data structure (or NULL to get
the first definstances).

A generic pointer to the first definstances in the list of definstances
if definstancesPtis NULL, otherwise a generic pointer to the
definstances immediately following definstancesPtin the list of
definstances. If definstancesPtis the last definstances in the list of
definstances, then NULL is returned.

4.15.7 IsDefinstancesDeletable

int IsDefinstancesDeletable(definstancesPtr);
VOID *definstancesPtr;

Purpose:

Arguments:

Returns:

4.15.8 ListDefinstances

Indicates whether or not a particular class definstances can be
deleted.

A generic pointer to a definstances data structure.

An integer; zero (0) if the definstances cannot be deleted, otherwise
aone (1).

VOID ListDefinstances(logicalName,theModule);

char *logicalName;

VOID *theModule;

Purpose:

Arguments:

Returns:

130

Prints the list of definstances (the C equivalent of the CLIPS
list-definstancescommand).

1) The logical name to which the listing output is sent.

2) A generic pointer to the module containing the definstances to
be listed. A NULL pointer indicates that definstances in all
modules should be listed.

No meaningful return value.

Section 4 - Embedding CLIPS

JSC-25012

4.15.9 Undefinstances

int Undefinstances(definstancesPtr);
VOID *definstancesPtr;

Purpose: Removes a definstances from CLIPS (the C equivalent of the CLIPS
undefinstancescommand).

Arguments: A generic pointer to a definstances data structure.

Returns: An integer; zero (0) if the definstances could not be deleted,
otherwise a one (1).
4.16 DEFMODULE FUNCTIONS

The following function calls are used for manipulating defmodules.

4.16.1 FindDefmodule

VOID *FindDefmodule(defmoduleName);
char *defmoduleName;

Purpose: Returns a generic pointer to a named defmodule.

Arguments: The name of the defmodule to be found.

Returns: A generic pointer to the named defmodule if it exists, otherwise
NULL.

4.16.2 GetCurrentModule
VOID *GetCurrentModule();

Purpose: Returns the current module (the C equivalent of the CLIPS get-
current-module function).

Arguments: None.

Returns: A generic pointer to the generic defmodule data structure that is the
current module.

CLIPS Advanced Programming Guide 131

CLIPS Reference Manual

4.16.3 GetDefmoduleList

VOID GetDefmoduleList(&returnValue);
DATA OBJECT returnValue;

Purpose: Returns the list of defmodules as a multifield value in the
returnValue DATA_OBJECT (the C equivalent of the CLIPS get-
defmodule-list function).

Arguments: A pointer to the caller’s DATA_OBJECT in which the return value
will be stored. The multifield functions described in section 3.2.4
can be used to retrieve the defmodule names from the list.

Returns: No meaningful return value.

4.16.4 GetDefmoduleName

char *GetDefmoduleName(defmodulePtr);
VOID *defmodulePtr;

Purpose: Returns the name of a defmodule.
Arguments: A generic pointer to a defmodule data structure.
Returns: A string containing the name of the defmodule.

4.16.5 GetDefmodulePPForm

char *GetDefmodulePPForm(defmodulePtr);
VOID *defmodulePtr;

Purpose: Returns the pretty print representation of a defmodule.
Arguments: A generic pointer to a defmodule data structure.
Returns: A string containing the pretty print representation of the defmodule

(or the NULL pointer if no pretty print representation exists).

4.16.6 GetNextDefmodule

VOID *GetNextDefmodule(defmodulePtr);
VOID *defmodulePtr;

Purpose: Provides access to the list of defmodules.

132 Section 4 - Embedding CLIPS

JSC-25012

Arguments: A generic pointer to a defmodule data structure (or NULL to get the
first defmodule).

Returns: A generic pointer to the first defmodule in the list of defmodules if
defmodulePtris NULL, otherwise a generic pointer to the
defmodule immediately following defmodulePtrin the list of
defmodules. If defmodulePtiis the last defmodule in the list of
defmodules, then NULL is returned.

4.16.7 ListDefmodules

VOID ListDefmodules(logicalName);
char *logicalName;

Purpose: Prints the list of defmodules (the C equivalent of the CLIPS
list-defmodulescommand).

Arguments: 1) The logical name to which the listing output is sent.

Returns: No meaningful return value.

4.16.8 SetCurrentModule

VOID *SetCurrentModule(defmodulePtr);
VOID *defmodulePtr;

Purpose: Sets the current module to the specified module (the C equivalent of
the CLIPS set-current-modulefunction).

Arguments: A generic pointer to a defmodule data structure.

Returns: A generic pointer to the previous current defmodule data structure.

4.17 EMBEDDED APPLICATION EXAMPLES

4.17.1 User-Defined Functions

This section lists the steps needed to define and use an embedded CLIPS application. The
example given is the same system used in section 3.4, now set up to run as an embedded
application.

CLIPS Advanced Programming Guide 133

CLIPS Reference Manual

1) Copy all of the CLIPS source code file to the user directory.

2) Define the user function (TripleNumber), a new main routine, and UserFunctions in a new
file. These could go in separate filesif desired. For this example, they will all be included in
a single file.

#include "clips.h"
main()

Initialize CLIPS();
Load("constructs.clp");
Reset();

Run(-1L)

VOID TripleNumber(returnValuePtr)
DATA _OBJECT_PTR returnValuePtr;

{

VOID *value;

long longValue;
double doubleValue;

I* */
* If illegal arguments are passed, return zero. */
I* */

if (ArgCountCheck("triple",EXACTLY,1) == -1)

SetpType(returnValuePtrINTEGER),
SetpValue(returnValuePtr,AddLong(OL));
return;

}
if (! ArgTypeCheck("triple”,1,INTEGER_OR_FLOAT returnValuePtr))

SetpType(returnValuePtrINTEGER),
SetpValue(returnValuePtr,AddLong(OL));
return;

}

134 Section 4 - Embedding CLIPS

JSC-25012

I* */
[* Triple the number. */
I* */

if (GetpType(returnValuePtr) == INTEGER)

value = GetpValue(returnValuePtr);
longValue = 3 * ValueToLong(value);
SetpValue(returnValuePtr,AddLong(longValue));

else /* the type must be FLOAT */

value = GetpValue(returnValuePtr);

doubleValue = 3.0 * ValueToDouble(value);
SetpValue(returnValuePtr,AddDouble(doubleValue));
}

return;

}

UserFunctions()
extern VOID TripleNumber();

DefineFunction2("triple”,'u’,PTIF TripleNumber, "TripleNumber",
Illlnll);
}

3) Define constructs which use the new function in afile called constructs.clp(or any file; just
be sure the call tboad loads all necessary constructs prior to execution).

(deffacts init-data
(data 34)
(data 13.2))

(defrule get-data
(data ?num)
=>
(printout t "Tripling " ?num crlf)
(assert (new-value (triple ?num))))

(defrule get-new-value
(new-value ?num)
=>
(printout t crlf "Now equal to " ?num crlf))

4) Compile all CLIPS filesexceptmain.c, along with all user files.
5) Link all object code files.

6) Execute new CLIPS executable.

CLIPS Advanced Programming Guide 135

CLIPS Reference Manual

4.17.2 Manipulating Objects and Calling CLIPS Functions

This section lists the steps needed to define and use an embedded CLIPS application. The
example illustrates how to call deffunctions and generic functions as well as manipulate objects
from C.

1) Copy all of the CLIPS source code file to the user directory.

2) Define a new main routine in a new file.

#include <stdio.h>
#include "clips.h"

main()
VOID *c1,*c2,*c3;
DATA_ OBJECT insdata,result;
char numbuf[20];

InitializeCLIPS();

* */
[* Load the classes, message-handlers, generic functions */

[* and generic functions necessary for handling complex */

[* numbers. */

* */

Load("complex.clp™);

I* */
[* Create two complex numbers. Message-passing is used to */

[* create the first instance c1, but c2 is created and has */

[* its slots set directly. */

I* */

cl = Makelnstance("(c1 of COMPLEX (real 1) (imag 10))");
c2 = CreateRawlnstance(FindDefclass("COMPLEX"),"c2");

result.type = INTEGER,;
result.value = AddLong(3L);
DirectPutSlot(c2,"real",&result);

result.type = INTEGER,;

result.value = AddLong(-7L);
DirectPutSlot(c2,"imag",&result);

136 Section 4 - Embedding CLIPS

JSC-25012

[* */
/* Call the function '+ which has been overloaded to handle */

[* complex numbers. The result of the complex addition is */

/* stored in a new instance of the COMPLEX class. */

[* */

CLIPSFunctionCall("+","[c1] [c2]",&result);
c3 = FindInstance(NULL,DOToString(result),CLIPS_ TRUE);

I* */
[* Print out a summary of the complex addition using the */

[* "print" and "magnitude” messages to get information */

[* about the three complex numbers. */

* */

PrintCLIPS("stdout”,"The addition of\n\n");

SetType(insdata,INSTANCE_ADDRESS);
SetValue(insdata,cl);
Send(&insdata,"print",NULL,&result);

PrintCLIPS("stdout”,"\nand\n\n");

SetType(insdata,INSTANCE_ADDRESS);
SetValue(insdata,c?2);
Send(&insdata,"print",NULL,&result);

PrintCLIPS("stdout","\nis\n\n");

SetType(insdata,INSTANCE_ADDRESS);
SetValue(insdata,c3);
Send(&insdata,"print",NULL,&result);

PrintCLIPS("stdout","\nand the resulting magnitude is\n\n");

SetType(insdata,INSTANCE_ADDRESS);
SetValue(insdata,c3);
Send(&insdata,"'magnitude”,NULL,&result);
sprintf(numbuf,"%If\n",DOToDouble(result));
PrintCLIPS("stdout",numbuf);

UserFunctions()

3) Define constructs which use the new function in afile called complex.clp (or any file; just
be sure the call tboad loads all necessary constructs prior to execution).

(defclass COMPLEX (is-a USER)
(role concrete)

(slot real (create-accessor read-write))
(slot imag (create-accessor read-write)))

CLIPS Advanced Programming Guide 137

CLIPS Reference Manual

(defmethod + ((?a COMPLEX) (?b COMPLEX))
(make-instance of COMPLEX
(real (+ (send ?a get-real) (send ?b get-real)))
(imag (+ (send ?a get-imag) (send ?b get-imag)))))

(defmessage-handler COMPLEX magnitude ()
(sart (+ (** ?self:real 2) (** ?self:imag 2))))

4) Compile all CLIPS filesexceptmain.c, along with all user files.

5) Link all object code files.

6) Execute new CLIPS executable.

138

Section 4 - Embedding CLIPS

JSC-25012

Section 5 - Creating a CLIPS Run-time Program

5.1 COMPILING THE CONSTRUCTS

This section describes the procedure for creating a CLIPS run-time module. A run-time program
compiles al of the constructs (defrule, deffacts, deftemplate, etc.) into a single executable and
reduces the size of the executable image. A run-time program will not run any faster than a
program loaded using the load or bload commands. The constructs-to-c command used to
generate a run-time program creates files containing the C data structures that would dynamically
be allocated if the load or bload command was used. With the exception of some initialization
routines, the constructs-to-ccommand does not generate any executable code. The primary
benefits of creating a run-time program are: applications can be delivered as a single executable
file; loading constructs as part of an executable is faster than loading them from an text or binary
file; the CLIPS portion of the run-time program is smaller because the code needed to parse
constructs can be discarded; and less memory is required to represent your program’s constructs
since memory for them is statically rather than dynamically allocated.

Creating a run-time module can be achieved with the following steps:

1) Start CLIPS and load in al of the constructs that will constitute a run-time module. Call the
constructs-to-ccommand using the following syntax:

(constructs-to-c <file-name> <id> [<max-elements>])

where <file-name> is a string or a symbol, <id> is an integer, and the optional argument
<max-elements> is also an integer. For example, if the construct file loaded was named
"expert.clp"”, the conversion command might be

(constructs-to-c exp 1)

This command would store the converted constructs in severa output files ("expl _1.c",
"expl 2.c", ..., "exp7_1.c") and use amodule id of 1 for this collection of constructs. The
use of the module id will be discussed in greater detail later. Once the conversion is
complete, exit CLIPS. For large systems, this output may be very large (> 200K). It is
possible to limit the size of the generated files by using the <max-elements> argument. This
argument indicates the maximum number of structures which may be placed in a single
array stored in afile. Where possible, if this number is exceeded new files will be created to
store additional information. This feature is useful for compilers that may place a limitation
on the size of a file that may be compiled.

CLIPS Advanced Programming Guide 139

CLIPS Reference Manual

2)

3)

140

Note that the .c extension is added by CLIPS. When giving the file name prefix, users
should consider the maximum number of characters their system alows in afile name. For
example, under MS-DOS, only eight characters are allowed in the file name. For very large
systems, it is possible for CLIPS to add up to 5 characters to the file name prefix. Therefore,
for system which allow only 8 character file names, the prefix should be no more than 3
characters.

Constraint information associated with constructsis not saved to the C files generated by the
constructs-to-ccommand unless dynamic constraint checking is enabled (using the set-
dynamic-constraint-checkingcommand).

The constructs-to-c command is not available in the standard CLIPS distribution
executable. Users wishing to create a run-time program must recompile CLIPS to include
this capability (see section 2.2 for information on tailloring CLIPS and the
CONSTRUCT_COMPILER setup flag).

Set the RUN_TIME setup flag in the setup.hheader file to 1 and compile all of the c files
just generated.

Modify the main.c module for embedded operation. Unless the user has other specific uses,
the argc and argv arguments to the main function should be eliminated. The user still must
call the function InitializeCLIPS in the main module. It will have been modified to make
appropriate initializations for the run-time version. Do not cal the CommandLoop or
RerouteStdin functions which are normally called from the main function of a command
line version of CLIPS. Do not define any functions in the UserFunctionsfunction. The
function UserFunctionsis not called during initialization. All of the function definitions
have aready been compiled in the 'C' constructs code. In addition to calling
InitializeCLIPS , afunction must be called to initialize the constructs module. This function
is defined in the 'C' constructs code, and its name is dependent upon the id used when
trandating the constructs to 'C' code. The name of the function is InitCimage_<id> where
<id> is the integer used as the construct module <id>. In the example above, the function
name would be InitCimage_1. These two initialization steps probably would be followed
by any user initialization, then by a reset and run. An examaie.c file would be

Section 5 - Creating a CLIPS Run-time Program

JSC-25012

#include <stdio.h>
#include "clips.h"

main()

Initialize CLIPS();
InitClmage_1();

. [* Any user Initialization */
Re.set();
Run(-1L);
: [* Any other code */
}
UserFunctions()

/* UserFunctions is not called for a run-time version. */

}

4) Recompileall of the CLIPS source code (the RUN_TIME flag should still be 1). This causes
several modifications in the CLIPS code. The run-time CLIPS module does not have the
capability to load new constructs. Do NOT change any other compiler flags! Because of the
time involved in recompiling CLIPS, it may be appropriate to recompile the run-time
version of CLIPS into a separate library from the full version of CLIPS.

5) Link all regular CLIPS modules together with any user-defined function modules and the 'C'
construct modules. Make sure that any user-defined functions have global scope. Do not
place the construct modules within a library for the purposes of linking (the regular CLIPS
modules, however, can be placed in a library). Some linkers (most notably the VAX VMS
linker) will not correctly resolve references to global data that is stored in a module
consisting only of global data.

6) The run-time module which includes user constructs is now ready to run.

Note that individual constructs may not be added or removed in a run-time environment. Because
of this, the load function is not available for use in run-time programs. The clear command will

also not remove any constructs (although it will clear facts and instances). Use calls to the
InitClmage ... functions to clear the environment and replace it with a new set of constructs. In
addition, theeval andbuild functions do not work in a run-time environment.

Since new constructs can’t be added, a run-time program can’t dynamically load a deffacts or
definstances construct. To dynamically load facts and/or instances in a run-time program, the
CLIPS load-facts and load-instancesfunctions or the C LoadFacts and Loadlnstances
functions should be used in place of deffacts and definstances constructs.

CLIPS Advanced Programming Guide 141

CLIPS Reference Manual

Switching between different images created using the constructs-to-c function is now supported.
Switching, however, may not occur while a CLIPS program is executing (e.g. you cannot call a
function from the RHS of a rule which switches a different image into memory). Note that
switching between construct images will clear al facts and instances from the CLIPS
environment. It is possible to switch to the same image more than once. An example main
program which switches between two different construct images is shown following.

main()
extern int failure;

InitializeCLIPS();

* */
[* Set up and run the first portion */

* of the expert system. */
* */

InitCimage_1();

Reset();
Run(-1L);

* */
[* Check a global variable that was defined to */
* indicate which portion of the expert system */

/* t0 run next. */
[* */

if (failure) InitClmage_2();
else InitCimage_3();

I* */
/* Run the remaining portion of the expert system. */

I* */
Reset();

Run(-1L);

5.1.1 Additional Considerations

The construct compiler is a feature that does not work as well as might be desired on some
machines. It has been tested on a VAX using VMS, a SUN workstation using UNIX, a
Macintosh with Think C and MPW C, and an IBM PC AT using severa different compilers. All
machines are able to produce run-time modules for relatively small programs (several dozen
constructs). However, the Macintosh and the IBM PC AT compilers have limitations and/or

142 Section 5 - Creating a CLIPS Run-time Program

JSC-25012

additional compilation and link options which must be taken into consideration when large
amounts of static data are defined in a program. These considerations are described below.

Macintosh (THINK C V5.04)

Enable the Far DATA option using the Set Project Type... menu item beforecompiling the
CLIPS source files and constructs-to-c generated files. Note that individual source files are
restricted to less than 32K of static data, so it may be necessary to limit the size of the files
generated by theonstructs-to-ccommand (see step 1 above).

Macintosh (MPW C V3.2)

When compiling (C command) and linking (Link command) the CLIPS source files and
constructs-to-c generated files, use the -b3 and -model far options. In addition, use the -srt
option for linking.

IBM PC AT (Microsoft C V6.0A using MS-DOS)

It is recommended that you use a <max-elements> size of about 300 when using the constructs-

to-c command to limit the size of the generated files. All files (both CLIPS source files and
constructs-to-c generated files) should be compiled using the /AH and /Gt1024 options. The
resulting object files should be linked using the /SEG:256 /ST:8192 and /NOI options. You

may wish to use other options as well or use different parameters for some of the options above.

IBM PC AT (Borland C++ V3.1 using Windows 3.1)

Borland C does not allow the huge memory module to be used for a Windows application, so the
limit of 64K of static data prevents using the construct compiler for anything but very small
programs.

IBM PC AT (Borland C++ V3.1 using MS-DOS)

It is recommended that you use a <max-elements> size of about 300 when using the constructs-
to-c command to limit the size of the generated files. All files (both CLIPS source files and
constructs-to-c generated files) should be compiled usingrtheand-d options.

IBM PC AT (Zortech C++ V3.1 using MS-DOS)

There is a compiler bug which manifests itself when dead code optimizations are performed.
When compiling the CLIPS source files, specify the -o-dc option to remove dead code
optimizations. In addition, use the -mx option when compiling and the =160000ption when
linking.

5.1.2 PORTING COMPILED CONSTRUCTS

Unlike previous version of files generated by the rules-to-c command, the files generated for
version 6.0 by the constructs-to-c function should be completely portable to other machines.

CLIPS Advanced Programming Guide 143

JSC-25012

Section 6 - Combining CLIPS with Languages Other Than C

CLIPS is developed in C and is most easily combined with user functions written in C. However,
other languages can be used for user-defined functions, and CLIPS even may be embedded
within a program written in another language. Users wishing to embed CLIPS with Ada should
consider using CLIPS/Ada (see fieIPS/AdaAdvanced Programming Guige

6.1 INTRODUCTION

This section will describe how to combine CLIPS with Ada or FORTRAN routines. Specific
code examples will be used to illustrate the concepts. The code used in these examples is valid
for VAX VMS systems which have the DEC C compiler, the DEC FORTRAN compiler, and the
DEC Ada compiler.

Three basic capabilities are needed for complete language mixing.
« A program in another language may be used as the main program.

* The C access functions to CLIPS can be called from the other language and have parameters
passed to them.

* Functions written in the other language can be called by CLIPS and have parameters passed
to them.

The integration of CLIPS (and C) with other languages requires an understanding of how each
language passes parameters between routines. In general, interface functions will be needed to
pass parameters from C to another language and from another language to C. The basic concepts
of mixed language parameter passing are the same regardless of the language or machine.
However, since every machine and operating system passes parameters differently, specific
details (and code) may differ from machine to machine. To improve usability and to minimize

the amount of recoding needed for each machine, interface packages can be developed which
allow user routines to call the standard CLIPS embedded command functions. The details of
passing informatiofrom external routines to CLIPS generally are handled inside of the interface
package. To pass parameters from CLid& external routine, users will have to write interface
functions. Example interface packages for VMS FORTRAN and VMS Ada to selected CLIPS
functions are listed in appendix A. Section 6.9 will discuss how to construct an interface package
for other machines/compilers.

6.2 ADA AND FORTRAN INTERFACE PACKAGE FUNCTION LIST

The Ada and FORTRAN interface packages in appendix A provide many of the embedded
CLIPS commands discussed in section 4 of this manual. Each function in the interface package

CLIPS Advanced Programming Guide 145

CLIPS Reference Manual

prepends aw to the beginning of the corresponding C function name. A list of the C functions
and their FORTRAN or Ada corollaries which are provided in the interface packages listed in the
appendices appears below.

C Function Ada/FORTRAN Function
InitializeCLIPS XlInitializeCLIPS
Reset XReset

Load xLoad

Run XRun

Facts xFacts

Watch xWatch
Unwatch xUnwatch
AssertString xAssertString
Retract XRetract
PrintCLIPS XPrintCLIPS
FindDefrule xFindDefrule
Undefrule xUndefrule

The arguments to these functions are the same as described in section 4, however, the
corresponding data type in either Ada or FORTRAN should be passed as a parameter. For
example, when using Ada, the function xL oad should be passed an Ada string, not a C string (the
function xLoad will perform the conversion). FORTRAN function names defined above do not
follow ANSI 77 name standards. The VM S FORTRAN implementation described in this section
allows long function names.

6.3 EMBEDDED CLIPS - USING AN EXTERNAL MAIN PROGRAM

Any program may be used as the main program for embedded CLIPS applications. The main
program works essentially the same as in C.

Example Ada Main Program
with CLIPS; use CLIPS;

with TEXT_IO; use TEXT_IO;
procedure MAIN is
File_Name - string (1..50);
File_Open_Status : integer;
Rules_Fired :integer;
begin
xInitialize CLIPS;
File_Name (1..7) := "mab.clp™;

146 Section 6 - Combining CLIPS with Languages Other Than C

JSC-25012

-- Load rules
File_Open_Status := xLoad (File_Name);

if File_Open_Status = 1 then
xReset;
Rules_Fired := xRun (-1);
PUT (integer'MAGE (Rules_Fired));
PUT_LINE (" Rules Fired");
else
PUT_LINE ("Unable to open rules file");
end if;

end MAIN;

Example FORTRAN Main Program
PROGRAM MAIN

C
INTEGER xLoad, FILE_OPEN_STATUS
CHARACTER *8 FILE_NAME
INTEGER xRun, RULES_FIRED

CALL xInitializeCLIPS

FILE_NAME = 'mab.clp’
FILE_OPEN_STATUS = xLoad (FILE_NAME)

IF (FILE_OPEN_STATUS .EQ. 1) THEN
CALL xReset
RULES_FIRED = xRun (-1)
WRITE (6,100) RULES_FIRED
ELSE
WRITE (6,101)
END IF

100 FORMAT (I18," RULES FIRED)

101 FORMAT (' UNABLE TO OPEN RULES FILE’)
STOP
END

SUBROUTINE UserFunctions
RETURN
END

6.4 ASSERTING FACTS INTO CLIPS

An external function may assert a fact into CLIPS by calling xAssertString. External functions

also may retract a fact previously asserted from outside of CLIPS. Note that the parameter passed
to xRetract must have been received from a call to xAssertString. Any other value will cause
unpredictable results.

CLIPS Advanced Programming Guide 147

CLIPS Reference Manual

Ada Example
Fact_Pointer . integer;
Not_Previously Retracted : boolean;

Fact_Pointer := xAssertString ("dummy hello");
Not_Previously Retracted := xRetract (Fact_Pointer);

FORTRAN Example
CHARACTER *20 FACT_STRING
INTEGER xAssertString, FACT_POINTER
INTEGER xRetract, NOT_PREVIOUSLY_ RETRACTED

FACT_STRING ='dummy hello’
FACT_POINTER = xAssertString (FACT_STRING)
NOT_PREVIOUSLY_RETRACTED = xRetract (FACT_POINTER)

6.5 CALLING A SUBROUTINE FROM CLIPS

Like any other user-defined functions, subroutines written in other languages may be called from
CLIPS. Depending on the language, the return value from the function call may or may not be
useful. For example, most FORTRAN implementations allow a return value from a function but
not from a subroutine. In these instances, the subroutine may be called for side effect only. As
with defined functions written in C, the user must create an entgenFunctionsfor the

subroutine (see section 3.1). Artern definition also must appear in the same file as the
UserFunctionsfunction, defining the type of data that the function will return. If the function

does not return a value (Ada procedures or FORTRAN subroutines), it should be defined as
returning a void value. See section 3.1 for the allowed return values for user-defined functions.

Ada Example
1:procedure DISPLAY is

2:-- Standard Ada definitions and declarations

3:begin

4:--

5:-- Any kind of normal Ada code may be used
6:--

7~

8:end DISPLAY;

148 Section 6 - Combining CLIPS with Languages Other Than C

JSC-25012

FORTRAN Example
subroutine display

C Any kind of normal FORTRAN code may be used
C

C
return
end

UserFunctions entry for either example
extern VOID display();

UserFunctions()
DefineFunction("display”,'v',PTIF display,"display");

* Any other user-defined functions. */

6.6 PASSING ARGUMENTS FROM CLIPS TO AN EXTERNAL FUNCTION

Arguments may be passed from CLIPS to an external function. CLIPS does not actually pass
arguments to the function; instead arguments must be pulled from internal CLIPS buffers by
using the functions described in section 3. Although the argument access functions could be
called directly from Ada or FORTRAN, it probably is easier to write an interface function in C.
CLIPS will call the C routine, which gathers the arguments and passes them in the proper manner
to the external subprogram.

In this situation, the user must ensure argument compatibility. In particular, string variables must
be converted from C arrays to FORTRAN or Ada string descriptors. The actual code used in the
interface routine for argument conversion will depend on the language. Examples are given
below for Ada and FORTRAN. Each example assumes the subroutine is called as follows:

(dummy 3.7 "An example string")

VMS Ada Example

Note the procedure definition in line 2 of the Ada routine. The numerical value is defined as an

IN OUT type and the string as an IN. Also note the compiler PRAGMA on line 4-5. PRAGMA

is DEC-Ada-specific, and a similar statement will be needed for other compilers. Following the

Ada routine is an example of a C interface function that calls the Ada subroutine. The C routine

CLIPS Advanced Programming Guide 149

CLIPS Reference Manual

must convert a C string into an Ada string descriptor usinlyldleeStringDsc (see section 6.7

for more on string conversion) function as shown in line 16 of the C routine. Note that the C
function passes theddressof the numerical parameters to the Ada subprogram (line 16) and a
pointer to a descriptor for the string parameter. Note also thakstirE-unctionsdefinition

(lines 21-24) calls the dummy C routine, not the Ada program.

package DUMMY_PKG is
procedure DUMMY (Value : in out float ;
Name :in string);
(The following two lines are DEC Ada specific)

pragma EXPORT_PROCEDURE (DUMMY
PARAMETER_TYPES => (float,string));

end DUMMY_PKG;

-- Ada interface to CLIPS internal functions, see Appendix A
with CLIPS_INTERNALS; use CLIPS_INTERNALS;

PACKAGE Dummy_PKG IS
package body DUMMY_PKG is

procedure DUMMY (Value : in out float ;
Name :in string) is

begin
-- Value and Name may be used as normal Ada variables.
-- Name should not be modified by this procedure since
-- it has a direct pointer to a CLIPS C string.

end DUMMY;

end DUMMY_PKG;

150 Section 6 - Combining CLIPS with Languages Other Than C

JSC-25012

C interface routine
#include <stdio.h>
#include "clips.h"

(The following two lines are VAX VMS specific)

#include <descrip.h>
struct dsc$descriptor_s *MakeStringDsc();

c_dummy()
double value;
char *name;
extern int dummy();

value = RtnDouble(1);
name = RtnLexeme(2);

dummy(&value, MakeStringDsc(name));

return(0);

UserFunctions()

DefineFunction("dummy", 'i', c_dummy, "c_dummy");

VMS FORTRAN Example
The VMS FORTRAN routine looks very similar to the Ada routine and, in fact, uses the same C
interface function listed for VMS Ada.

subroutine dummy(value, name)
C

REAL value

CHARACTER *80 name

value and name may now be used as normal FORTRAN variables

OO0

C
return
end

Note that the previous two examples performed the string conversion in C, not in the language
(Ada or FORTRAN) to which the string was being passed. On some machines, it may be easier
to convert the string in the language (Ada or FORTRAN) to which the string is being passed
rather than in the language (C) from which the string is being passed.

CLIPS Advanced Programming Guide 151

CLIPS Reference Manual

6.7 STRING CONVERSION

Much of the information that needs to be passed between CLIPS and another language typically
is stored as strings. The storage of string variables can differ radically between languages. Both
Ada and FORTRAN use a special (machine-dependent) string descriptor for string data types,
whereas C uses simple arrays. Because of this difference, special functions must be defined to
convert FORTRAN or Ada strings to C strings and back. The implementation of these functions
will be different for every language and computer. Typically, two functions are needed: one to
convert an Ada or a FORTRAN string to a C string, and one to convert a C string to an Ada or a
FORTRAN string descriptor. When converting C strings that have been provided by CLIPS to
strings suitable for other languagde,notmodify the original C string. The following table

shows the string conversion routines provided in the interface packages in appendix A.

Environment Function to Convert Function to Convert
TO a C string FROM a C string
VMS Ada ADA TO C STRING MakeStringDsc
VMS FORTRAN CONVERT _TO C STRING MakeStringDsc

The interface package does all of the converting from Ada or FORTRAN strings to C strings.
Users will have to convert from C when defining functions that are passed parameters from
CLIPS. Appendix A.3 has a listing for a function that will convert C strings to Ada or
FORTRAN character strings under VAX VMS.

6.8 COMPILING AND LINKING

After all routines are defined, they must be compiled and linked to execute. The manner of
compilation will depend on the machine on which the user is working. Two examples are given
below: one for VMS Ada and one for VMS FORTRAN.

6.8.1 VMS Ada Version

1) Copy all of the CLIPS include files and Ada interface package to the user directory.

$copy [CLIPS master directonj¥.h [{user directory}
$copy [CLIPS master directonyff.ada [{user directory}

2) Create an object file from the file holding tdeerFunctionsdefinition.
$cc usrfuncs.c

3) Set up the Ada library and compile the Ada routine(s).

152 Section 6 - Combining CLIPS with Languages Other Than C

JSC-25012

$acs create library fuser directory}adalib]

$acs set library [user directory}adalib]

$ada{Ada files, including the interface packages}

4) Export the Ada object code from the DEC ACS library.

$acs export/main{Ada files, including the interface package}

5) Define the link libraries and link all of the files together. Note that, prior to linking, each
user must define the standard link libraries with the define Ink$library command. This
usually is done once in the login.comfile during login. This definition may be different for

each VMS system.

$link/executables{exec name} {Ada files}, usrfuncs, [{CLIPS master directory}]
clipslib/library

This will create an embedded version of CLIPS using an Ada routine as the main program. To
create a program that uses the CLIPS interface but calls Ada subprograms, modify step 4 to read

$acs exporf{user's Ada packages}

5) Copy the CLIPS main.c file from the CLIPS master directory and remove the
User Functions definition from the CLIPS3nain.c routine. Then recompile

$cc main
6) Link with the following command:

$link/executables{ exec name} {Ada files}, main, usrfuncs, [{CLIPS master directory}]
clipslib/library

6.8.2 VMS FORTRAN Version

1) Copy all of the CLIPS include files to the user directory.

$copy [CLIPS master directonjf.h [{user directory}

2) Create an object file from the file holding tdserFunctionsdefinition.
$cc usrfuncs.c

3) Compile the FORTRAN routine(s).

CLIPS Advanced Programming Guide 153

CLIPS Reference Manual

$fortran {FORTRAN files}
4) Link all of the files together.

$link/executable{ exec name} {FORTRAN files}, usrfuncs, [{ CLIPS master directory}]
clipslib/library, clipsforlib/library

Note that one of the FORTRAN programsistbe a main program.

6.8.3 CLIPS Library

All of the previous examples assume a CLIPS library has been created on the user's machine. A
CLIPS library can be made with any standard object code library program and should include all
of the CLIPS object code files exceptthe main.c file. A library also may be made for the
interface packages.

6.9 BUILDING AN INTERFACE PACKAGE

To develop an interface package for CLIPS and FORTRAN, Ada, or any other language, the
primary need is the string conversion routines. Once these have been developed, the rest of the
interface package should look very similar to the examples shown in appendices A.1to A.3. The
majority of the conversion work should be done in the interface package. Note that if a CLIPS
function takes no arguments then it is not necessary to write an interface function for it. For
example, the function ListFacts takes no arguments and has no return value and can therefore be
called directly (however, some languages, such as Ada, will require the function to be declared).
The Ada listing in appendix A.1 use pragmas to map the C ListFacts function to the Ada
xListFacts function (for consistency with the other functions which are proceeded by an x). The
FORTRAN listings in appendix A include interface routines to function which do not require
them as well. The functions listed in appendix A also directly mimic the equivalent C functions.
That is, functions which return the integer O or 1 in C have the exact same value returned by their
Ada and FORTRAN counterparts (rather than a boolean or logical value). It would normally be
more useful to directly map these integers values into their boolean counterparts (TRUE or
FALSE) in the other language.

154 Section 6 - Combining CLIPS with Languages Other Than C

JSC-25012

Section 7 - 1/O Router System

Thel/O router system provided in CLIPS is quite flexible and will allow a wide variety of
interfaces to be developed and easily attached to CLIPS. The system is relatively easy to use and
is explained fully in sections 7.1 through 7.4. The CLIPS I/O functions for using the router

system are described in sections 7.5 and 7.6, and finally, in appendix B, some examples are
included which show how 1/O routing could be used for simple interfaces.

7.1 INTRODUCTION

The problem that originally inspired the idea of 1/0 routing will be considered as an introduction
to I/O routing. Because CLIPS was designed with portability as a major goal, it was not possible
to build a sophisticated user interface that would support many of the features found in the
interfaces of commercial expert system building tools. A prototype was built of a semi-portable
interface for CLIPS using the CURSES screen management package. Many problems were
encountered during this effort involving both portability concerns and CLIPS internal features.
For example, every statement in the source code which used the C print fypratibn for

printing to the terminal had to be replaced by the CURSES funetfmmtw , which would

print to a window on the terminal. In addition to changing function call names, different types of
I/0 had to be directed to different windows. The tracing information was to be sent to one
window, the command prompt was to appear in another window, and output from printout
statements was to be sent to yet another window.

This prototype effort pointed out two major needs: First, the need for generic 1/O functions that
would remain the same regardless of whether 1/0O was directed to a standard terminal interface or
to a more complex interface (such as windows); and second, the need to be able to specify
different sources and destinations for 1/O. I/O routing was designed in CLIPS to handle these
needs. The concept of I/O routing will be further explained in the following sections.

7.2 LOGICAL NAMES

One of the key concepts of I/O routing is the uslgital names An analogy will be useful in
explaining this concept. Consider the Acme company which has two computers: computers X
and Y. The Acme company stores three data sets on these two computers: a personnel data set,
an accounting data set, and a documentation data set. One of the employees, Joe, wishes to
update the payroll information in the accounting data set. If the payroll information was located
in directory A on computer Y, Joe's command would be

update Y:[A]payroll

If the data were moved to directory B on computer X, Joe’s command would have to be changed
to

CLIPS Advanced Programming Guide 155

CLIPS Reference Manual

update X:[B]payroll

To update the payroll file, Joe must know its location. If the file is moved, Joe must be informed
of its new location to be able to update it. From Joe’s point of view, he does not care where the
file is located physically. He simply wants to be able to specify that he wants the information
from the accounting data set. He would rather use a command like

update accounting:payroll

By using logical names, the information about where the accounting files are located physically
can be hidden from Joe while still allowing him to access them. The locations of the files are
equated with logical names as shown here.

accounting = X:[A]
documentation = X:[C]
personnel = Y:[B]

Now, if the files are moved, Joe does not have to be informed of their relocation so long as the
logical names are updated. This is the power of using logical names. Joe does not have to be
aware of the physical location of the files to access them; he only needs to be aware that
accounting is the logical name for the location of the accounting data files. Logical names allow
reference to an object without having to understand the details of the implementation of the
reference.

In CLIPS, logical names are used to send I/0O requests without having to know which device
and/or function is handling the request. Consider the message that is printed in CLIPS when rule
tracing is turned on and a rule has just fired. A typical message would be

FIRE 1 example-rule: f-0

The routine that requests this message be printed should not have to know where the message is
being sent. Different routines are required to print this message to a standard terminal, a window
interface, or a printer. The tracing routine should be able to send this message to a logical name
(for exampletrace-out) and should not have to know if the device to which the message is being
sent is a terminal or a printer. The logical ndamaee-out allows tracing information to be sent

simply to “the place where tracing information is displayed.” In short, logical names allow I/O
requests to be sent to specific locations without having to specify the details of how the I/O
request is to be handled.

Many functions in CLIPS make use of logical names. Botlptimtout andformat functions
require a logical name as their first argument. fidael function can take a logical name as an
optional argument. Thepenfunction causes the association of a logical name with a file, and
theclose function removes this association.

156 Section 7 - /0 Router System

JSC-25012

Several logical names are predefined by CLIPS and are used extensively throughout the system
code. These are

Name Description
stdin The default for al user inputs. The read and readline functions
read fromstdin if t is specified as the logical name.

stdout The default for all user outputs. The format and printout functions
send output tetdout if t is specified as the logical name.

wclips The CLIPS prompt is sent to this logical name.
wdialog All informational messages are sent to this logical name.
wdisplay Requests to display CLIPS information, such as facts or rules, are

sent to this logical name.

werror All error messages are sent to this logical name.
wwarning All warning messages are sent to this logical name.
wtrace All watch information is sent to this logical name (with the

exception of compilations which is sent to wdialog).

7.3 ROUTERS

The use of logical names hsealved two problems. Logical names make it easy to create generic
I/0O functions, and they allow the specification of different sources and destinations for I/O. The
use of logical names allows CLIPS to ignore the specifics of an 1/0 request. However, such
requests must still be specified at some level. I/O routers are provided to handle the specific
details of a request.

A router consists of three components. The first component is a function which can determine
whether the router can handle an I/O request for a given logical name. The router which
recognizes I/O requests that are to be sent to the serial port may not recognize the same logical
names as that which recognizes I/O requests that are to be sent to the terminal. On the other hand,
two routers may recognize the same logical names. A router that keeps a log of a CLIPS session
(a dribble file) may recognize the same logical names as that which handles 1/0O requests for the
terminal.

CLIPS Advanced Programming Guide 157

CLIPS Reference Manual

The second component of a router is its priority. When CLIPS receives an I/O request, it begins
to question each router to discover whether it can handle an I/O request. Routers with high
priorities are questioned before routers with low priorities. Priorities are very important when
dealing with one or more routers that can each process the same 1/O request. This is particularly
true when a router is going to redefine the standard user interface. The router associated with the
standard interface will handle the same 1/O requests as the new router; but, if the new router is
given a higher priority, the standard router will never receive any 1/O requests. The new router
will "intercept” all of the I/O requests. Priorities will be discussed in more detail in the next
section.

The third component of a router consists of the functions which actually handle an I/O request.
These include functions for printing strings, getting a character from an input buffer, returning a
character to an input buffer, and a function to clean up (e.qg., close files, remove windows) when
CLIPS is exited.

7.4 ROUTER PRIORITIES

Each I/O router has a priority. Priority determines which routers are queried first when
determining the router that will handle an 1/0O request. Routers with high priorities are queried
before routers with low priorities. Priorities are assigned as integer values (the higher the integer,
the higher the priority). Priorities are important because more than one router can handle an 1/0
request for a single logical name, and they enable the user to define a custom interface for
CLIPS. For example, the user could build a custom router which handles all logical names
normally handled by the default router associated with the standard interface. The user adds the
custom router with a priority higher than the priority of the router for the standard interface. The
custom router will then intercept all 1/0 requests intended for the standard interface and specially
process those requests to the custom interface.

Once the router system sends an I/O request out to a router, it considers the request satisfied. If a
router is going to share an I/O request (i.e., process it) then allow other routers to process the
request also, that router must deactivate itself andPcaliCLIPS again. These types of routers
should use a priority of either 30 or 40. An example is given in appendix B.2.

Priority Router Description
50 Any router that uses "unique" logical names and does not want to
share 1/0O with catch-all routers.

40 Any router that wants to grab standard 1/0 and is willing to share it
with other routers. A dribble file is a good example of this type of
router. The dribble file router needs to grab al output that normally
would go to the terminal so it can be placed in the dribble file, but
this same output also needs to be sent to the router which displays
output on the terminal.

158 Section 7 - /0 Router System

JSC-25012

30 Any router that uses "unique" logical names and is willing to share
I/O with catch-all routers.

20 Any router that wants to grab standard logical names and is not
willing to share them with other routers.

10 This priority is used by a router which redefines the default user
interface 1/0O router. Only one router should use this priority.

0 This priority is used by the default router for handling standard and
file logical names. Other routers should not use this priority.

7.5 INTERNAL I/O FUNCTIONS

The following functions are called internally by CLIPS. These functions search the list of active
routers and determine which router should handle an 1/O request. Some routers may wish to
deactivate themselves and call one of these functions to allow the next router to process an 1/0
request. Prototypes for these functions can be included by usiakipthb header file or the

router.h header file.

7.5.1 ExitCLIPS
VOID ExitCLIPS(exitCode);

int exitCode;

Purpose: The function ExitCLIPS calls the exit function associated with
each active router before exiting CLIPS.

Arguments: The exitCodeargument corresponds to the value that normally
would be sent to the system exit function. Consult a C system
manual for more details on the meaning of this argument.

Returns: No meaningful return value.

Info: The function ExitCLIPS calls the system function exit with the
argument num after calling all exit functions associated with 1/0
routers.

7.5.2 GetcCLIPS

int GetcCLIPS(logicalName);
char *logicalName;

CLIPS Advanced Programming Guide 159

CLIPS Reference Manual

Purpose: The function GetcCLIPS queries al active routers until it finds a
router that recognizes the logical name associated with this 1/0 re-
guest to get a character. It then calls the get character function asso-
ciated with that router.

Arguments: The logical name associated with the get character 1/0 request.
Returns: An integer; the ASCII code of the character.
Info: This function should be used by any user-defined function in place

of getcto ensure that character input from the function can be
received from a custom interface. On machines which default to
unbuffered 1/0, user code should be prepared to handle special
characters like the backspace.

7.5.3 PrintCLIPS

int PrintCLIPS(logicalName,str);
char *logicalName, *str;

Purpose: The function PrintCLIPS queries all active routers until it finds a
router that recognizes the logical name associated with this 1/0 re-
quest to print astring. It then calls the print function associated with
that router.

Arguments: 1) The logical name associated with the location at which the string
is to be printed.
2) The string that is to be printed.

Returns: Returns a non-zero value if the logical name is recognized,
otherwise it returns zero.

Info: This function should be used by any user-defined function in place
of printf to ensure that output from the function can be sent to a
custom interface.

7.5.4 UngetcCLIPS
int UngetcCLIPS(ch,logicalName);

int ch;
char *logicalName;

160 Section 7 - /0 Router System

JSC-25012

Purpose: The function UngetcCLIPS queries al active routers until it finds a
router that recognizes the logical name associated with this 1/0O re-
guest. It then calls the ungetc function associated with that router.

Arguments: 1) The ASCII code of the character to be returned.
2) The logica name associated with the ungetc character 1/0
request.
Returns: Returnschif successful, otherwise -1.
Info: This function should be used by any user-defined function in place

of UngetcCLIPS to ensure that character input from the function
can be received from a custom interface. As with GetcCLIPS, user
code should be prepared to handle special characters like the
backspace on machines with unbuffered I/O.

7.6 ROUTER HANDLING FUNCTIONS

The following functions are used for creating, deleting, and handling 1/0O routers. They are
intended for use within user-defined functions. Prototypes for these functions can be included by
using theclips.h header file or theouter.h header file.

7.6.1 ActivateRouter

int ActivateRouter(routerName);
char *routerName;

Purpose: The function ActivateRouter activates an existing 1/O router. This
router will be queried to see if it can handle an 1/O request. Newly
created routers do not have to be activated.

Arguments: The name of the I/O router to be activated.

Returns: Returns a non-zero vaue if the logical name is recognized,
otherwise it returns zero.

CLIPS Advanced Programming Guide 161

CLIPS Reference Manual

7.6.2 AddRouter

int AddRouter(routerName,priority,queryFunction,printFunction,
getcFunction,ungetcFunction,exitFunction);

char *routerName;

int priority;

int (*queryFunction)(), (*printFunction)();

int (*getcFunction)(), (*ungetcFunction)(), (*exitFunction)();

int queryFunction(logicalName);

int printFunction(logicalName,str);
int getcFunction(logicalName);

int ungetcFunction(ch,logicalName);
int exitFunction(exitCode);

char *logicalName, *str, ch;

int exitCode;
Purpose: The function AddRouter adds a new 1/O router to the list of 1/0
routers.
Arguments: 1) The name of the I/O router. This name is used to reference the

router by the other I/O router handling functions.

2) The priority of the I/O router. 1/O routers are queried in
descending order of priorities.

3) A pointer to the query function associated with this router. This
guery function should accept a single argument, a logical name,
and return either TRUE (1) or FALSE (0) depending upon
whether the router recognizes the logical name.

4) A pointer to the print function associated with this router. This
print function should accept two arguments: a logical name and
a character string. The return value of the print function is not
meaningful.

5) A pointer to the get character function associated with this
router. The get character function should accept a single ar-
gument, a logical name. The return value of the get character
function should be an integer which represents the character or
end of file (EOF) read from the source represented by logical
name.

6) A pointer to the ungetc character function associated with this
router. The ungetc character function accepts two arguments. a
logical name and a character. The return value of the unget
character function should be an integer which represents the
character which was passed to it as an argument if the ungetc is
successful or end of file (EOF) is the ungetc is not successful.

162 Section 7 - /0 Router System

JSC-25012

7) A pointer to the exit function associated with this router. The
exit function should accept a single argument: the exit code
represented by num.

Returns: Returns a zero value if the router could not be added, otherwise a
non-zero value is returned.

Info: I/O routers are active upon being created. See the examples in ap-
pendix B for further information on how to use this function.

7.6.3 DeactivateRouter

int DeactivateRouter(routerName);
char *routerName;

Purpose: The function DeactivateRouter deactivates an existing 1/0 router.
This router will not be queried to seeif it can handle an /O request.
The syntax of th®eactivateRouterfunction is as follows.

Arguments: The name of the 1/O router to be deactivated.

Returns: Returns a non-zero value if the logical name is recognized,
otherwise it returns zero.

7.6.4 DeleteRouter

int DeleteRouter(routerName);
char *routerName;

Purpose: The function DeleteRouter removes an existing 1/0O router from the
list of 1/O routers.

Arguments: The name of the I/O router to be deleted.

Returns: Returns a non-zero value if the logical name is recognized,
otherwise it returns zero.

CLIPS Advanced Programming Guide 163

JSC-25012

Section 8 - Memory Management

Efficient use of memory is a very important aspect of an expert system tool. Expert systems are
highly memory intensive and require comparatively large amounts of memory. To optimize both
storage and processing speed, CLIPS does much of its own memory management. Section 8.1
describes the basic memory management scheme used in CLIPS. Section 8.2 describes some
functions that may be used to monitor/ control memory usage.

8.1 HOW CLIPS USES MEMORY

The CLIPS internal data structures used to represent constructs and other data entities require the
alocation of dynamic memory to create and execute. Memory can also be released as these data
structures are no longer needed and are removed. All requests, either to allocate memory or to
free memory, are routed through the CLIPS memory management functions. These functions
request memory from the operating system and store previously used memory for reuse. By
providing its own memory management, CLIPS is able to reduce the number of malloc calls to
the operating system. This is very important since malloc calls are handled differently on each
machine, and some implementationsnaflloc are very inefficient.

When new memory is needed by any CLIPS function, CLIPS first checks its own data buffers for
a pointer to a free structure of the type requested. If one is found, the stored pointer is returned.
Otherwise, a call is made toalloc for the proper amount of data and a new pointer is returned.

When a data structure is no longer needed, CLIPS saves the pointer to that memory against the
next request for a structure of that type. Memory actually is released to the operating system only
under limited circumstances. If amalloc call in a CLIPS function returns NULL ,all free memory
internally stored by CLIPS is released to the operating system and the malloc call is tried again.
This usually happens during rule execution, and the message

*** DEALLOCATING MEMORY ***
*** MEMORY DEALLOCATED ***

will be printed out to the wdialog stream. Users also may force memory to be released to the
operating system (see section 8.2).

CLIPS uses the generic C function malloc to request memory. Some machines provide
lower-level memory allocation/deallocation functions that are considerably faster than malloc.
Generic CLIPS memory alocation and deallocation functions are stored in the memory.c file
and are called genalloc and genfree. The call to malloc and free in these functions could be
replaced to improve performance on a specific machine.

CLIPS Advanced Programming Guide 165

CLIPS Reference Manual

Some machines have very inefficient memory management services. When running on the such
machines, CLIPS can be made to request very large chunks of memory and internally allocate
smaller chunks of memory from the larger chunks. This technique bypasses numerous calls to
malloc thus improving performance. This behavior can be enabled by setting the
BLOCK_MEMORY compiler option in the setup.hheader file to 1 (see section 2.2). In general,

166 Section 8 - Memory Management

